Medicine and Epidemiology & Community Medicine, University of Ottawa, ASB1-003 1053 Carling Ave, Ottawa, ON, K1Y 4E9, Canada.
Ottawa Hospital Research Institute, Ottawa, Canada.
J Gen Intern Med. 2021 Jan;36(1):162-169. doi: 10.1007/s11606-020-06307-x. Epub 2020 Oct 26.
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) causes COVID-19 disease. There are concerns regarding limited testing capacity and the exclusion of cases from unproven screening criteria. Knowing COVID-19 risks can inform testing. This study derived and assessed a model to predict risk of SARS-CoV-2 in community-based people.
All people presenting to a community-based COVID-19 screening center answered questions regarding symptoms, possible exposure, travel, and occupation. These data were anonymously linked to SARS-CoV-2 testing results. Logistic regression was used to derive a model to predict SARS-CoV-2 infection. Bootstrap sampling evaluated the model.
A total of 9172 consecutive people were studied. Overall infection rate was 6.2% but this varied during the study period. SARS-CoV-2 infection likelihood was primarily influenced by contact with a COVID-19 case, fever symptoms, and recent case detection rates. Internal validation found that the SARS-CoV-2 Risk Prediction Score (SCRiPS) performed well with good discrimination (c-statistic 0.736, 95%CI 0.715-0.757) and very good calibration (integrated calibration index 0.0083, 95%CI 0.0048-0.0131). Focusing testing on people whose expected SARS-CoV-2 risk equaled or exceeded the recent case detection rate would increase the number of identified SARS-CoV-2 cases by 63.1% (95%CI 54.5-72.3).
The SCRiPS model accurately estimates the risk of SARS-CoV-2 infection in community-based people undergoing testing. Using SCRiPS can importantly increase SARS-CoV-2 infection identification when testing capacity is limited.
严重急性呼吸综合征冠状病毒 2(SARS-CoV-2)可引发 COVID-19 疾病。由于检测能力有限,以及采用未经证实的筛查标准而排除病例,人们对此表示担忧。了解 COVID-19 风险有助于确定是否需要进行检测。本研究旨在建立并评估一种用于预测社区人群中 SARS-CoV-2 感染风险的模型。
所有到社区 COVID-19 筛查中心就诊的人员均需回答有关症状、可能接触、旅行和职业的问题。这些数据被匿名链接到 SARS-CoV-2 检测结果。使用逻辑回归建立预测 SARS-CoV-2 感染的模型。采用自举抽样方法评估模型。
共纳入了 9172 名连续就诊的人员。总体感染率为 6.2%,但在研究期间有所变化。SARS-CoV-2 感染的可能性主要受与 COVID-19 病例接触、发热症状和近期病例检出率的影响。内部验证发现,SARS-CoV-2 风险预测评分(SCRiPS)具有良好的区分度(C 统计量为 0.736,95%CI 为 0.715-0.757)和极好的校准度(整合校准指数为 0.0083,95%CI 为 0.0048-0.0131)。将检测重点放在预期 SARS-CoV-2 风险等于或超过近期病例检出率的人群上,可将 SARS-CoV-2 确诊病例数增加 63.1%(95%CI 为 54.5-72.3)。
SCRiPS 模型可准确评估接受检测的社区人群中 SARS-CoV-2 感染的风险。在检测能力有限的情况下,使用 SCRiPS 可重要提高 SARS-CoV-2 感染的识别率。