Lindeboom Wouter, Deacy Arron C, Phanopoulos Andreas, Buchard Antoine, Williams Charlotte K
Department Chemistry, University of Oxford, Chemistry Research Laboratory, 12 Mansfield Road, Oxford, OX1 3TA, UK.
Department of Chemistry, Imperial College London, Molecular Sciences Research Hub, London, W12 OBZ, UK.
Angew Chem Int Ed Engl. 2023 Sep 11;62(37):e202308378. doi: 10.1002/anie.202308378. Epub 2023 Aug 7.
Carbon dioxide copolymerization is a front-runner CO utilization strategy but its viability depends on improving the catalysis. So far, catalyst structure-performance correlations have not been straightforward, limiting the ability to predict how to improve both catalytic activity and selectivity. Here, a simple measure of a catalyst ground-state parameter, metal reduction potential, directly correlates with both polymerization activity and selectivity. It is applied to compare performances of 6 new heterodinuclear Co(III)K(I) catalysts for propene oxide (PO)/CO ring opening copolymerization (ROCOP) producing poly(propene carbonate) (PPC). The best catalyst shows an excellent turnover frequency of 389 h and high PPC selectivity of >99 % (50 °C, 20 bar, 0.025 mol% catalyst). As demonstration of its utility, neither DFT calculations nor ligand Hammett parameter analyses are viable predictors. It is proposed that the cobalt redox potential informs upon the active site electron density with a more electron rich cobalt centre showing better performances. The method may be widely applicable and is recommended to guide future catalyst discovery for other (co)polymerizations and carbon dioxide utilizations.
二氧化碳共聚是一种领先的二氧化碳利用策略,但其可行性取决于催化性能的提升。到目前为止,催化剂结构与性能之间的关联并不直接,这限制了预测如何同时提高催化活性和选择性的能力。在此,一种简单的催化剂基态参数测量方法,即金属还原电位,与聚合活性和选择性直接相关。它被用于比较6种新型异双核Co(III)K(I)催化剂在环氧丙烷(PO)/CO开环共聚(ROCOP)制备聚碳酸丙烯酯(PPC)中的性能。最佳催化剂显示出389 h的优异周转频率和>99%的高PPC选择性(50°C,20 bar,0.025 mol%催化剂)。作为其实用性的证明,密度泛函理论(DFT)计算和配体哈米特参数分析都不是可行的预测方法。有人提出,钴的氧化还原电位反映了活性位点的电子密度,钴中心电子密度越高,性能越好。该方法可能具有广泛的适用性,建议用于指导未来其他(共)聚合反应和二氧化碳利用的催化剂发现。