Suppr超能文献

基于信息论的生物分子最优模型约简方法。

An Information-Theory-Based Approach for Optimal Model Reduction of Biomolecules.

机构信息

Physics Department, University of Trento, via Sommarive 14, I-38123 Trento, Italy.

INFN-TIFPA, Trento Institute for Fundamental Physics and Applications, I-38123 Trento, Italy.

出版信息

J Chem Theory Comput. 2020 Nov 10;16(11):6795-6813. doi: 10.1021/acs.jctc.0c00676. Epub 2020 Oct 27.

Abstract

In theoretical modeling of a physical system, a crucial step consists of the identification of those degrees of freedom that enable a synthetic yet informative representation of it. While in some cases this selection can be carried out on the basis of intuition and experience, straightforward discrimination of the important features from the negligible ones is difficult for many complex systems, most notably heteropolymers and large biomolecules. We here present a thermodynamics-based theoretical framework to gauge the effectiveness of a given simplified representation by measuring its information content. We employ this method to identify those reduced descriptions of proteins, in terms of a subset of their atoms, that retain the largest amount of information from the original model; we show that these highly informative representations share common features that are intrinsically related to the biological properties of the proteins under examination, thereby establishing a bridge between protein structure, energetics, and function.

摘要

在物理系统的理论建模中,一个关键步骤包括确定那些自由度,这些自由度能够对其进行综合但有信息的表示。虽然在某些情况下,这种选择可以基于直觉和经验进行,但对于许多复杂系统,包括杂多聚物和大型生物分子,很难从微不足道的特征中直接区分重要特征。我们在这里提出了一个基于热力学的理论框架,通过测量信息含量来评估给定简化表示的有效性。我们采用这种方法来确定那些以蛋白质原子子集表示的简化描述,这些描述保留了原始模型中最大量的信息;我们表明,这些高度信息丰富的表示形式具有共同的特征,这些特征与所研究的蛋白质的生物学特性内在相关,从而在蛋白质结构、能量学和功能之间建立了桥梁。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b8ab/7659038/d860a56ff901/ct0c00676_0001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验