F.M. Kirby Neurobiology Center, Boston Children's Hospital, and Department of Neurology and Ophthalmology, Harvard Medical School, Boston, MA, USA.
Department of Pediatrics, Brain Tumor Center, Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA.
Neuron. 2020 Dec 9;108(5):876-886.e4. doi: 10.1016/j.neuron.2020.09.016. Epub 2020 Oct 26.
Myelination facilitates rapid axonal conduction, enabling efficient communication across different parts of the nervous system. Here we examined mechanisms controlling myelination after injury and during axon regeneration in the central nervous system (CNS). Previously, we discovered multiple molecular pathways and strategies that could promote robust axon regrowth after optic nerve injury. However, regenerated axons remain unmyelinated, and the underlying mechanisms are elusive. In this study, we found that, in injured optic nerves, oligodendrocyte precursor cells (OPCs) undergo transient proliferation but fail to differentiate into mature myelination-competent oligodendrocytes, reminiscent of what is observed in human progressive multiple sclerosis. Mechanistically, we showed that OPC-intrinsic GPR17 signaling and sustained activation of microglia inhibit different stages of OPC differentiation. Importantly, co-manipulation of GPR17 and microglia led to extensive myelination of regenerated axons. The regulatory mechanisms of stage-dependent OPC differentiation uncovered here suggest a translatable strategy for efficient de novo myelination after CNS injury.
髓鞘形成促进轴突快速传导,使神经系统的不同部位能够有效通讯。在这里,我们研究了中枢神经系统(CNS)损伤后和轴突再生过程中控制髓鞘形成的机制。此前,我们发现了多种可以促进视神经损伤后轴突大量再生的分子途径和策略。然而,再生轴突仍然没有髓鞘,其潜在机制尚不清楚。在这项研究中,我们发现,在损伤的视神经中,少突胶质前体细胞(OPC)经历短暂的增殖,但不能分化为成熟的髓鞘形成能力的少突胶质细胞,这与人类进行性多发性硬化症中观察到的情况类似。从机制上讲,我们表明,少突胶质细胞内在的 GPR17 信号和小胶质细胞的持续激活抑制了少突胶质前体细胞分化的不同阶段。重要的是,GPR17 和小胶质细胞的共同操作导致了再生轴突的广泛髓鞘化。这里揭示的少突胶质前体细胞分化的阶段依赖性调节机制提示了一种在中枢神经系统损伤后进行有效髓鞘新生的可转化策略。