Pakula Anna, El Nagar Salsabiel, Bayin N Sumru, Christensen Jens Bager, Stephen Daniel, Reid Adam James, Koche Richard P, Joyner Alexandra L
Developmental Biology Program, Sloan Kettering Institute, New York, United States.
Gurdon Institute, Cambridge University, Cambridge, United Kingdom.
Elife. 2025 Aug 12;14:RP102515. doi: 10.7554/eLife.102515.
The neonatal mouse cerebellum shows remarkable regenerative potential upon injury at birth, wherein a subset of Nestin-expressing progenitors (NEPs) undergoes adaptive reprogramming to replenish granule cell progenitors that die. Here, we investigate how the microenvironment of the injured cerebellum changes upon injury and contributes to the regenerative potential of normally gliogenic-NEPs and their adaptive reprogramming. Single-cell transcriptomic and bulk chromatin accessibility analyses of the NEPs from injured neonatal cerebella compared to controls show a temporary increase in cellular processes involved in responding to reactive oxygen species (ROS), a known damage-associated molecular pattern. Analysis of ROS levels in cerebellar tissue confirms a transient increase 1 day after injury at postnatal day 1, overlapping with the peak cell death in the cerebellum. In a transgenic mouse line that ubiquitously overexpresses human mitochondrial catalase (mCAT), ROS is reduced 1 day after injury to the granule cell progenitors, and we demonstrate that several steps in the regenerative process of NEPs are curtailed, leading to reduced cerebellar growth. We also provide preliminary evidence that microglia are involved in one step of adaptive reprogramming by regulating NEP replenishment of the granule cell precursors. Collectively, our results highlight that changes in the tissue microenvironment regulate multiple steps in adaptive reprogramming of NEPs upon death of cerebellar granule cell progenitors at birth, highlighting the instructive roles of microenvironmental signals during regeneration of the neonatal brain.
新生小鼠小脑在出生时受伤后显示出显著的再生潜力,其中一部分表达巢蛋白的祖细胞(NEPs)会经历适应性重编程,以补充死亡的颗粒细胞祖细胞。在此,我们研究受伤小脑的微环境在损伤后如何变化,并对正常生成胶质细胞的NEPs的再生潜力及其适应性重编程产生影响。与对照组相比,对受伤新生小脑的NEPs进行单细胞转录组和整体染色质可及性分析表明,参与对活性氧(ROS)作出反应的细胞过程暂时增加,ROS是一种已知的与损伤相关的分子模式。对小脑组织中ROS水平的分析证实,在出生后第1天损伤后1天ROS会短暂增加,这与小脑中细胞死亡的峰值重叠。在一个普遍过表达人线粒体过氧化氢酶(mCAT)的转基因小鼠品系中,颗粒细胞祖细胞损伤后1天ROS减少,并且我们证明NEPs再生过程中的几个步骤受到抑制,导致小脑生长减缓。我们还提供了初步证据,表明小胶质细胞通过调节颗粒细胞前体的NEP补充参与适应性重编程的一个步骤。总的来说,我们的结果突出表明,组织微环境的变化调节了出生时小脑颗粒细胞祖细胞死亡后NEPs适应性重编程中的多个步骤,突出了微环境信号在新生脑再生过程中的指导作用。