Suppr超能文献

用于发现GSK3β抑制剂的机器学习

Machine Learning for Discovery of GSK3β Inhibitors.

作者信息

Vignaux Patricia A, Minerali Eni, Foil Daniel H, Puhl Ana C, Ekins Sean

机构信息

Collaborations Pharmaceuticals, Inc., 840 Main Campus Drive, Lab 3510, Raleigh, North Carolina 27606, United States.

出版信息

ACS Omega. 2020 Oct 12;5(41):26551-26561. doi: 10.1021/acsomega.0c03302. eCollection 2020 Oct 20.

Abstract

Alzheimer's disease (AD) is the most common cause of dementia, affecting approximately 35 million people worldwide. The current treatment options for people with AD consist of drugs designed to slow the rate of decline in memory and cognition, but these treatments are not curative, and patients eventually suffer complete cognitive injury. With the substantial amounts of published data on targets for this disease, we proposed that machine learning software could be used to find novel small-molecule treatments that can supplement the AD drugs currently on the market. In order to do this, we used publicly available data in ChEMBL to build and validate Bayesian machine learning models for AD target proteins. The first AD target that we have addressed with this method is the serine-threonine kinase glycogen synthase kinase 3 beta (GSK3β), which is a proline-directed serine-threonine kinase that phosphorylates the microtubule-stabilizing protein tau. This phosphorylation prompts tau to dissociate from the microtubule and form insoluble oligomers called paired helical filaments, which are one of the components of the neurofibrillary tangles found in AD brains. Using our Bayesian machine learning model for GSK3β consisting of 2368 molecules, this model produced a five-fold cross validation ROC of 0.905. This model was also used for virtual screening of large libraries of FDA-approved drugs and clinical candidates. Subsequent testing of selected compounds revealed a selective small-molecule inhibitor, ruboxistaurin, with activity against GSK3β (avg IC = 97.3 nM) and GSK3α (IC = 695.9 nM). Several other structurally diverse inhibitors were also identified. We are now applying this machine learning approach to additional AD targets to identify approved drugs or clinical trial candidates that can be repurposed as AD therapeutics. This represents a viable approach to accelerate drug discovery and do so at a fraction of the cost of traditional high throughput screening.

摘要

阿尔茨海默病(AD)是痴呆症最常见的病因,全球约有3500万人受其影响。目前针对AD患者的治疗方案包括旨在减缓记忆和认知衰退速度的药物,但这些治疗方法无法治愈疾病,患者最终会遭受完全的认知损伤。鉴于已发表的关于该疾病靶点的大量数据,我们提出可以使用机器学习软件来寻找新型小分子治疗方法,以补充目前市场上的AD药物。为了实现这一目标,我们利用ChEMBL中的公开数据构建并验证了针对AD靶蛋白的贝叶斯机器学习模型。我们用这种方法处理的第一个AD靶点是丝氨酸 - 苏氨酸激酶糖原合酶激酶3β(GSK3β),它是一种脯氨酸导向的丝氨酸 - 苏氨酸激酶,可使微管稳定蛋白tau磷酸化。这种磷酸化促使tau从微管上解离并形成不溶性寡聚体,称为双螺旋丝,它是AD大脑中神经原纤维缠结的组成成分之一。使用我们由2368个分子组成的针对GSK3β的贝叶斯机器学习模型,该模型的五重交叉验证ROC为0.905。该模型还用于对FDA批准的药物和临床候选药物的大型文库进行虚拟筛选。对所选化合物的后续测试发现了一种选择性小分子抑制剂鲁比前列酮,它对GSK3β(平均IC = 97.3 nM)和GSK3α(IC = 695.9 nM)具有活性。还鉴定出了其他几种结构不同的抑制剂。我们现在正在将这种机器学习方法应用于其他AD靶点,以识别可重新用作AD治疗药物的批准药物或临床试验候选药物。这代表了一种可行的方法来加速药物发现,并且成本仅为传统高通量筛选的一小部分。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/23d7/7581251/26618f33aaf3/ao0c03302_0002.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验