Suppr超能文献

利用机器学习建立结构-活性关系模型,以鉴定针对 GSK3 的小分子作为潜在的 COVID-19 治疗药物。

Modeling structure-activity relationships with machine learning to identify GSK3-targeted small molecules as potential COVID-19 therapeutics.

机构信息

Department of Molecular Science and Technology, Ajou University, Suwon, Republic of Korea.

S&K Therapeutics, Ajou University Campus Plaza, Suwon, Republic of Korea.

出版信息

Front Endocrinol (Lausanne). 2023 Mar 6;14:1084327. doi: 10.3389/fendo.2023.1084327. eCollection 2023.

Abstract

Coronaviruses induce severe upper respiratory tract infections, which can spread to the lungs. The nucleocapsid protein (N protein) plays an important role in genome replication, transcription, and virion assembly in SARS-CoV-2, the virus causing COVID-19, and in other coronaviruses. Glycogen synthase kinase 3 (GSK3) activation phosphorylates the viral N protein. To combat COVID-19 and future coronavirus outbreaks, interference with the dependence of N protein on GSK3 may be a viable strategy. Toward this end, this study aimed to construct robust machine learning models to identify GSK3 inhibitors from Food and Drug Administration-approved and investigational drug libraries using the quantitative structure-activity relationship approach. A non-redundant dataset consisting of 495 and 3070 compounds for GSK3α and GSK3β, respectively, was acquired from the ChEMBL database. Twelve sets of molecular descriptors were used to define these inhibitors, and machine learning algorithms were selected using the LazyPredict package. Histogram-based gradient boosting and light gradient boosting machine algorithms were used to develop predictive models that were evaluated based on the root mean square error and R-squared value. Finally, the top two drugs (selinexor and ruboxistaurin) were selected for molecular dynamics simulation based on the highest predicted activity (negative log of the half-maximal inhibitory concentration, pIC value) to further investigate the structural stability of the protein-ligand complexes. This artificial intelligence-based virtual high-throughput screening approach is an effective strategy for accelerating drug discovery and finding novel pharmacological targets while reducing the cost and time.

摘要

冠状病毒会引起严重的上呼吸道感染,可能会扩散到肺部。核衣壳蛋白(N 蛋白)在导致 COVID-19 的 SARS-CoV-2 病毒和其他冠状病毒中,对于基因组复制、转录和病毒粒子组装起着重要作用。糖原合成酶激酶 3(GSK3)的激活会使病毒的 N 蛋白发生磷酸化。为了应对 COVID-19 和未来的冠状病毒爆发,干扰 N 蛋白对 GSK3 的依赖性可能是一种可行的策略。为此,本研究旨在构建稳健的机器学习模型,使用定量构效关系方法从美国食品和药物管理局批准和正在研究的药物库中识别 GSK3 抑制剂。从 ChEMBL 数据库中获得了分别包含 495 个和 3070 个化合物的非冗余数据集,用于 GSK3α 和 GSK3β。使用 12 组分子描述符来定义这些抑制剂,并使用 LazyPredict 包选择机器学习算法。使用基于直方图的梯度提升和轻梯度提升机算法来开发预测模型,基于均方根误差和 R 平方值进行评估。最后,根据最高预测活性(半最大抑制浓度的负对数,pIC 值)选择了两种排名最高的药物(selinexor 和 ruboxistaurin)进行分子动力学模拟,以进一步研究蛋白-配体复合物的结构稳定性。这种基于人工智能的虚拟高通量筛选方法是一种有效的策略,可以加速药物发现并找到新的药理靶点,同时降低成本和时间。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8ae4/10025526/1029273eca1c/fendo-14-1084327-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验