Suppr超能文献

用于动态共价化学应用和聚合物科学的内催化。

Internal catalysis for dynamic covalent chemistry applications and polymer science.

机构信息

Polymer Chemistry Research group, Centre of Macromolecular Chemistry (CMaC), Department of Organic and Macromolecular Chemistry, Faculty of Sciences, Ghent University, Krijgslaan 281-S4, Ghent, 9000, Belgium.

出版信息

Chem Soc Rev. 2020 Dec 7;49(23):8425-8438. doi: 10.1039/d0cs00452a. Epub 2020 Oct 28.

Abstract

Strong covalent chemical bonds that can also be reversed, cleaved or exchanged are the subject of so-called dynamic covalent chemistry (DCC). Applications range from classical protective groups in organic chemistry and cleavable linkers for solid phase synthesis, to more modern applications in dynamic compound libraries and adaptive materials. Interest in dynamic, reversible or responsive chemistries has risen in particular in the last few decades for the design and synthesis of new DCC-based polymer materials. Implementation of DCC in polymers yields materials with unique combinations of properties and in some cases even unprecedented properties for covalent materials, such as self-healing materials, covalent adaptable networks (CANs) and vitrimers. In particular, the incorporation of DCC in polymer materials aims to find a balance between a swift and triggerable reactivity, combined with a high degree of intrinsic robustness and stability. Applying harsh conditions, highly active catalysts or highly reactive bonding groups, as is done in classical DCC, is often not feasible or desirable, as it can damage the polymer's integrity, leading to loss of function and properties. In this context, so-called internally catalysed DCC platforms have started to receive more interest in this area. This approach relies on the relative proximity and orientation of common functional groups, which can influence a chemical exchange reaction in a subtle but significant way. This approach mimicks the strategies found in enzymic reactions, and is known in classical organic chemistry as neighbouring group participation (NGP). The use of internal catalysis or NGP within polymer material science has proven to be a highly attractive strategy. This tutorial review will outline examples showing the scope, advantages and pitfalls of using internal catalysis within different DCC applications, ranging from small molecules to dynamic polymer materials.

摘要

能够发生可逆断裂或交换的强共价化学键是所谓动态共价化学(DCC)的研究对象。其应用范围从有机化学中的经典保护基团和固相合成中的可裂解连接子,到动态化合物库和自适应材料等更现代的应用。在过去几十年中,人们对动态、可逆或响应性化学的兴趣尤其增加,这是为了设计和合成基于新 DCC 的聚合物材料。在聚合物中实施 DCC 可以得到具有独特性能组合的材料,在某些情况下甚至可以为共价材料提供前所未有的性能,例如自修复材料、共价自适应网络(CAN)和 vitrimers。特别是,将 DCC 引入聚合物材料旨在在快速和触发反应性与高度内在的坚固性和稳定性之间找到平衡。在聚合物材料中应用苛刻的条件、高活性催化剂或高反应性键合基团,如在经典 DCC 中那样,通常是不可行的或不理想的,因为它会破坏聚合物的完整性,导致功能和性能的丧失。在这种情况下,所谓的内部催化 DCC 平台在该领域开始受到更多关注。这种方法依赖于常见官能团的相对接近和取向,这些官能团可以以微妙但重要的方式影响化学交换反应。这种方法模仿了酶反应中的策略,在经典有机化学中被称为邻基参与(NGP)。在聚合物材料科学中使用内部催化或 NGP 已被证明是一种极具吸引力的策略。本教程综述将概述在不同 DCC 应用中使用内部催化的范围、优势和陷阱的实例,从小分子到动态聚合物材料。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验