文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

磁铁矿纳米粒子的大小和浓度在不同场强和频率下的热疗作用。

Role of Magnetite Nanoparticles Size and Concentration on Hyperthermia under Various Field Frequencies and Strengths.

机构信息

Department of Geology, United Arab Emirates University, Al-Ain 15551, United Arab Emirates.

Department of Physics, United Arab Emirates University, Al-Ain 15551, United Arab Emirates.

出版信息

Molecules. 2021 Feb 4;26(4):796. doi: 10.3390/molecules26040796.


DOI:10.3390/molecules26040796
PMID:33557107
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC7913832/
Abstract

Magnetite (FeO) nanoparticles were synthesized using the chemical coprecipitation method. Several nanoparticle samples were synthesized by varying the concentration of iron salt precursors in the solution for the synthesis. Two batches of nanoparticles with average sizes of 10.2 nm and 12.2 nm with nearly similar particle-size distributions were investigated. The average particle sizes were determined from the XRD patterns and TEM images. For each batch, several samples with different particle concentrations were prepared. Morphological analysis of the samples was performed using TEM. The phase and structure of the particles of each batch were studied using XRD, selected area electron diffraction (SAED), Raman and XPS spectroscopy. Magnetic hysteresis loops were obtained using a Lakeshore vibrating sample magnetometer (VSM) at room temperature. In the two batches, the particles were found to be of the same pure crystalline phase of magnetite. The effects of particle size, size distribution, and concentration on the magnetic properties and magneto thermic efficiency were investigated. Heating profiles, under an alternating magnetic field, were obtained for the two batches of nanoparticles with frequencies 765.85, 634.45, 491.10, 390.25, 349.20, 306.65, and 166.00 kHz and field amplitudes of 100, 200, 250, 300 and 350 G. The specific absorption rate (SAR) values for the particles of size 12.2 nm are higher than those for the particles of size 10.2 nm at all concentrations and field parameters. SAR decreases with the increase of particle concentration. SAR obtained for all the particle concentrations of the two batches increases almost linearly with the field frequency (at fixed field strength) and nonlinearly with the field amplitude (at fixed field frequency). SAR value obtained for magnetite nanoparticles with the highest magnetization is 145.84 W/g at 765.85 kHz and 350 G, whereas the SAR value of the particles with the least magnetization is 81.67 W/g at the same field and frequency.

摘要

采用化学共沉淀法合成了磁铁矿(FeO)纳米粒子。通过改变溶液中铁盐前体的浓度,合成了多个纳米粒子样品。研究了两个平均粒径分别为 10.2nm 和 12.2nm、粒径分布相近的纳米粒子批次。平均粒径由 XRD 图谱和 TEM 图像确定。对于每个批次,都制备了具有不同颗粒浓度的多个样品。使用 TEM 对样品进行了形态分析。使用 XRD、选区电子衍射(SAED)、拉曼和 XPS 光谱研究了每个批次的颗粒的相和结构。使用 Lakeshore 振动样品磁强计(VSM)在室温下获得磁滞回线。在这两个批次中,发现颗粒均为相同的纯磁铁矿晶相。研究了粒径、粒径分布和浓度对磁性和磁热效率的影响。获得了两个批次的纳米粒子在频率为 765.85、634.45、491.10、390.25、349.20、306.65 和 166.00kHz 以及磁场强度为 100、200、250、300 和 350G 的交变磁场下的加热曲线。粒径为 12.2nm 的粒子的比吸收率(SAR)值在所有浓度和场参数下均高于粒径为 10.2nm 的粒子。SAR 随颗粒浓度的增加而降低。两个批次的所有颗粒浓度的 SAR 值随磁场频率(在固定磁场强度下)几乎呈线性增加,随磁场幅度(在固定磁场频率下)呈非线性增加。在 765.85kHz 和 350G 下,具有最高磁化强度的磁铁矿纳米粒子的 SAR 值为 145.84W/g,而具有最小磁化强度的粒子的 SAR 值为 81.67W/g,在相同的磁场和频率下。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0a01/7913832/9e5e4b11aade/molecules-26-00796-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0a01/7913832/9b2f93851277/molecules-26-00796-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0a01/7913832/a7e389e9a0ec/molecules-26-00796-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0a01/7913832/fe9488e8014d/molecules-26-00796-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0a01/7913832/7d69b58e0970/molecules-26-00796-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0a01/7913832/03b0aabb0675/molecules-26-00796-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0a01/7913832/799d9ad698e3/molecules-26-00796-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0a01/7913832/7e9b7fee0b34/molecules-26-00796-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0a01/7913832/73fb068feca0/molecules-26-00796-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0a01/7913832/9e5e4b11aade/molecules-26-00796-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0a01/7913832/9b2f93851277/molecules-26-00796-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0a01/7913832/a7e389e9a0ec/molecules-26-00796-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0a01/7913832/fe9488e8014d/molecules-26-00796-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0a01/7913832/7d69b58e0970/molecules-26-00796-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0a01/7913832/03b0aabb0675/molecules-26-00796-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0a01/7913832/799d9ad698e3/molecules-26-00796-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0a01/7913832/7e9b7fee0b34/molecules-26-00796-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0a01/7913832/73fb068feca0/molecules-26-00796-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0a01/7913832/9e5e4b11aade/molecules-26-00796-g009.jpg

相似文献

[1]
Role of Magnetite Nanoparticles Size and Concentration on Hyperthermia under Various Field Frequencies and Strengths.

Molecules. 2021-2-4

[2]
Specific Absorption Rate Dependency on the Co Distribution and Magnetic Properties in CoMnFeO Nanoparticles.

Nanomaterials (Basel). 2021-5-7

[3]
Green Synthesis of FeO Nanoparticles Stabilized by a Fruit Peel Extract for Hyperthermia and Anticancer Activities.

Int J Nanomedicine. 2021

[4]
Hysteresis losses and specific absorption rate measurements in magnetic nanoparticles for hyperthermia applications.

Biochim Biophys Acta Gen Subj. 2016-12-14

[5]
Synthesis of hydrophilic superparamagnetic magnetite nanoparticles via thermal decomposition of Fe(acac), in 80 vol% TREG + 20 vol% TREM.

J Nanosci Nanotechnol. 2011-3

[6]
Green synthesis of biocompatible FeO magnetic nanoparticles using Citrus Sinensis peels extract for their biological activities and magnetic-hyperthermia applications.

Sci Rep. 2023-11-3

[7]
Functionalization and Haemolytic analysis of pure superparamagnetic magnetite nanoparticle for hyperthermia application.

J Biol Phys. 2022-12

[8]
Correlation between effects of the particle size and magnetic field strength on the magnetic hyperthermia efficiency of dextran-coated magnetite nanoparticles.

Mater Sci Eng C Mater Biol Appl. 2020-12

[9]
Application of biocompatible and ultrastable superparamagnetic iron(III) oxide nanoparticles doped with magnesium for efficient magnetic fluid hyperthermia in lung cancer cells.

J Mater Chem B. 2023-5-10

[10]
Assessing the Heat Generation and Self-Heating Mechanism of Superparamagnetic FeO Nanoparticles for Magnetic Hyperthermia Application: The Effects of Concentration, Frequency, and Magnetic Field.

Nanomaterials (Basel). 2023-1-22

引用本文的文献

[1]
Wild grown Portulaca oleracea as a novel magnetite based carrier with in vitro antioxidant and cytotoxicity potential.

Sci Rep. 2025-3-13

[2]
Recent advancements and clinical aspects of engineered iron oxide nanoplatforms for magnetic hyperthermia-induced cancer therapy.

Mater Today Bio. 2024-11-28

[3]
Precise air oxidation for continuous production of superparamagnetic FeO nanoparticles at room temperature through a microfilm reactor.

RSC Adv. 2024-10-29

[4]
Pharmaceutical Quality by Design Approach to Develop High-Performance Nanoparticles for Magnetic Hyperthermia.

ACS Nano. 2024-6-11

[5]
Evaluation of Antiproliferative Properties of CoMnZn-FeO Ferrite Nanoparticles in Colorectal Cancer Cells.

Pharmaceuticals (Basel). 2024-3-1

[6]
Synthesis of Iron Oxides and Influence on Final Sizes and Distribution in Bacterial Cellulose Applications.

Polymers (Basel). 2023-8-3

[7]
High Biocompatibility, MRI Enhancement, and Dual Chemo- and Thermal-Therapy of Curcumin-Encapsulated Alginate/FeO Nanoparticles.

Pharmaceutics. 2023-5-18

[8]
Functionalization and Haemolytic analysis of pure superparamagnetic magnetite nanoparticle for hyperthermia application.

J Biol Phys. 2022-12

[9]
Dextran-Coated Iron Oxide Nanoparticles Loaded with Curcumin for Antimicrobial Therapies.

Pharmaceutics. 2022-5-14

[10]
Synthesis of Magnetite Nanoparticles through a Lab-On-Chip Device.

Materials (Basel). 2021-10-8

本文引用的文献

[1]
Surface Study of FeO Nanoparticles Functionalized With Biocompatible Adsorbed Molecules.

Front Chem. 2019-10-4

[2]
Synthesis of Magnetic Ferrite Nanoparticles with High Hyperthermia Performance via a Controlled Co-Precipitation Method.

Nanomaterials (Basel). 2019-8-16

[3]
Controlling the dominant magnetic relaxation mechanisms for magnetic hyperthermia in bimagnetic core-shell nanoparticles.

Nanoscale. 2019-2-14

[4]
Investigating Exchange Bias and Coercivity in Fe₃O₄-γ-Fe₂O₃ Core-Shell Nanoparticles of Fixed Core Diameter and Variable Shell Thicknesses.

Nanomaterials (Basel). 2017-11-26

[5]
Hydrothermal Synthesis of Metal Oxide Nanoparticles in Supercritical Water.

Materials (Basel). 2010-6-25

[6]
Experimental estimation and analysis of variance of the measured loss power of magnetic nanoparticles.

Sci Rep. 2017-7-27

[7]
Recent progress on magnetic nanoparticles for magnetic hyperthermia.

Prog Biomater. 2016-12

[8]
Nanotechnology in hyperthermia cancer therapy: From fundamental principles to advanced applications.

J Control Release. 2016-6-3

[9]
Biomedical Applications of Advanced Multifunctional Magnetic Nanoparticles.

J Nanosci Nanotechnol. 2015-12

[10]
Nanosystems: the use of nanoalloys, metallic, bimetallic, and magnetic nanoparticles in biomedical applications.

Phys Chem Chem Phys. 2015-11-14

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索