Sambugaro Alessia, Concas Guilherme C, Gisbert Mariana, Perez Geronimo, da Silva Bruno G, Sommer Rubem L, Rossi Andre L, Araujo Jefferson F D F, Safonova Anna, Enrichi Francesco, Del Rosso Tommaso, Daldosso Nicola
Department of Engineering for Innovation Medicine, University of Verona Strada le Grazie 15 37134 Verona Italy
Department of Physics, Pontifical Catholic University of Rio de Janeiro Rua Marques de São Vicente 225 22451-900 Rio de Janeiro Brazil
RSC Adv. 2025 Jun 5;15(24):19000-19012. doi: 10.1039/d5ra01448d. eCollection 2025 Jun 4.
Nanomaterials are playing an increasingly prominent role in recent biomedical applications, particularly due to their promising potential to combine diagnostic and therapeutic functions within a single multifunctional carrier. In this context, intrinsically luminescent silicon nanostructures offer a compelling alternative to conventional fluorophores. Their integration with magnetic nanoparticles could pave the way for the development of a traceable, multimodal platform in the field of nanomedicine. With this objective, we investigated the decoration/infiltration of light-emitting porous silicon (pSi) with iron oxide nanoparticles (FeO NPs) synthesized by pulsed laser ablation at two different liquid-gas interfaces: water-air (FeO NPs-Air), and water-argon (FeO NPs-Ar). This kind of polydispersed NPs are well-suited to filling the wide pore size range of the porous network. Moreover, their intrinsic positive surface charge enables straightforward and direct interaction with negatively charged carboxyl-functionalized porous silicon, without requiring additional surface modifications, chemical agents, or time-consuming intermediate processing steps such as the thermal oxidation or dehydration procedures reported in previous studies. The effectiveness of this simple infiltration/decoration approach-achieved through basic chemical mixing in a standard container-was successfully demonstrated by electron microscopies, Z-potential, optical, and magnetization experiments, which indicate a ferromagnetic behavior of the porous Si FeO nanocomposites (pSi + FeO NCs). The optical emission properties of the pSi + FeO NCs were maintained with respect to the bare ones, although slightly less intense and blue-shifted (about 15 nm), in agreement with the change of radiative lifetime from about 30 μs to 20 μs. Magnetic measurements reveal that pSi + FeO NCs obtained using FeO NPs synthesized at the air-water interface exhibit a weaker, noisier signal with ∼80 Oe coercivity and lower remanence. Conversely, those produced at the argon-water interface show a stronger magnetic response, with ∼170 Oe coercivity and higher remanence. Notably, the magnetic properties of the Ar-synthesized sample remained stable for months without affecting its intrinsic photoluminescence, offering a stable micro-nano optical and magnetic system for theranostics applications.
纳米材料在最近的生物医学应用中发挥着越来越突出的作用,特别是因为它们在单一多功能载体中结合诊断和治疗功能的潜力巨大。在这种背景下,本征发光的硅纳米结构为传统荧光团提供了一种引人注目的替代方案。它们与磁性纳米颗粒的整合可为纳米医学领域中可追踪的多模态平台的开发铺平道路。出于这个目的,我们研究了在两个不同的液 - 气界面(水 - 空气(FeO NPs - Air)和水 - 氩(FeO NPs - Ar))通过脉冲激光烧蚀合成的氧化铁纳米颗粒(FeO NPs)对发光多孔硅(pSi)的修饰/渗透。这种多分散的纳米颗粒非常适合填充多孔网络的宽孔径范围。此外,它们固有的正表面电荷能够与带负电荷的羧基官能化多孔硅直接进行简单直接的相互作用,而无需额外的表面修饰、化学试剂或耗时的中间处理步骤,如先前研究中报道的热氧化或脱水程序。通过在标准容器中进行基本的化学混合实现的这种简单渗透/修饰方法的有效性,已通过电子显微镜、Z 电位、光学和磁化实验成功证明,这些实验表明多孔 Si - FeO 纳米复合材料(pSi + FeO NCs)具有铁磁行为。与裸的 pSi + FeO NCs 相比,其光发射特性得以保持,尽管强度稍低且发生了约 15 nm 的蓝移,这与辐射寿命从约 30 μs 变为 20 μs 一致。磁性测量表明,使用在空气 - 水界面合成的 FeO NPs 获得的 pSi + FeO NCs 表现出较弱、噪声较大的信号,矫顽力约为 80 Oe,剩磁较低。相反,在氩 - 水界面制备的样品表现出更强的磁响应,矫顽力约为 170 Oe,剩磁更高。值得注意的是,氩气合成样品的磁性在数月内保持稳定,而不影响其固有光致发光,为诊疗应用提供了一个稳定的微纳光学和磁性系统。
Front Chem. 2019-1-29
Nanomaterials (Basel). 2023-8-5
J Nanosci Nanotechnol. 2020-4-1
ACS Appl Mater Interfaces. 2025-5-14
Materials (Basel). 2022-1-10
Nanomaterials (Basel). 2021-12-17
Front Cell Dev Biol. 2021-7-2
Nanomaterials (Basel). 2020-10-23