Lewandowski Adrián Leandro, Tosoni Sergio, Gura Leonard, Yang Zechao, Fuhrich Alexander, Prieto Mauricio J, Schmidt Thomas, Usvyat Denis, Schneider Wolf-Dieter, Heyde Markus, Pacchioni Gianfranco, Freund Hans-Joachim
Fritz-Haber-Institut der Max-Planck-Gesellschaft, Faradayweg 4-6, 14195, Berlin, Germany.
Department of Materials Science, Universitá di Milano-Bicocca, Via R. Cozzi, 55, 20125, Milan, Italy.
Chemistry. 2021 Jan 26;27(6):1870-1885. doi: 10.1002/chem.202001806. Epub 2020 Dec 9.
The present review reports on the preparation and atomic-scale characterization of the thinnest possible films of the glass-forming materials silica and germania. To this end state-of-the-art surface science techniques, in particular scanning probe microscopy, and density functional theory calculations have been employed. The investigated films range from monolayer to bilayer coverage where both, the crystalline and the amorphous films, contain characteristic XO (X=Si,Ge) building blocks. A side-by-side comparison of silica and germania monolayer, zigzag phase and bilayer films supported on Mo(112), Ru(0001), Pt(111), and Au(111) leads to a more general comprehension of the network structure of glass former materials. This allows us to understand the crucial role of the metal support for the pathway from crystalline to amorphous ultrathin film growth.
本综述报道了玻璃形成材料二氧化硅和锗的尽可能薄的薄膜的制备及原子尺度表征。为此,采用了最先进的表面科学技术,特别是扫描探针显微镜,以及密度泛函理论计算。所研究的薄膜覆盖范围从单层到双层,其中结晶薄膜和非晶薄膜均包含特征性的XO(X = Si、Ge)结构单元。对支撑在Mo(112)、Ru(0001)、Pt(111)和Au(111)上的二氧化硅和锗单层、之字形相和双层薄膜进行并排比较,有助于更全面地理解玻璃形成材料的网络结构。这使我们能够了解金属支撑在从结晶到非晶超薄膜生长过程中的关键作用。