Musetti Bruno, González-Ramos Helena, González Mercedes, Bahnson Edward M, Varela Javier, Thomson Leonor
Laboratorio de Enzimología, Instituto de Química Biológica, Facultad de Ciencias, Universidad de la República, 11400 Montevideo, Uruguay.
Grupo de Química Orgánica Medicinal, Facultad de Ciencias, Universidad de la República, 11400 Montevideo, Uruguay.
J Cannabis Res. 2020;2. doi: 10.1186/s42238-020-00042-0. Epub 2020 Oct 15.
Multiple therapeutic properties have been attributed to However, further research is required to unveil the medicinal potential of Cannabis and the relationship between biological activity and chemical profile.
The primary objective of this study was to characterize the chemical profile and antioxidant properties of three varieties of available in Uruguay during progressive stages of maturation.
Fresh samples of female inflorescences from three stable phenotypes, collected at different time points during the end of the flowering period were analyzed. Chemical characterization of chloroform extracts was performed by H-NMR. The antioxidant properties of the cannabis sativa extracts, and pure cannabinoids, were measured in a Cu-induced LDL oxidation assay.
The main cannabinoids in the youngest inflorescences were tetrahydrocannabinolic acid (THC-A, 242 ± 62 mg/g) and tetrahydrocannabinol (THC, 7.3 ± 6.5 mg/g). Cannabinoid levels increased more than twice in two of the mature samples. A third sample showed a lower and constant concentration of THC-A and THC (177 ± 25 and 1 ± 1, respectively). The THC-A/THC rich cannabis extracts increased the latency phase of LDL oxidation by a factor of 1.2-3.5 per μg, and slowed down the propagation phase of lipoperoxidation (IC 1.7-4.6 μg/mL). Hemp, a cannabidiol (CBD, 198 mg/g) and cannabidiolic acid (CBD-A, 92 mg/g) rich variety, also prevented the formation of conjugated dienes during LDL oxidation. In fact, 1 μg of extract was able to stretch the latency phase 3.7 times and also to significantly reduce the steepness of the propagation phase (IC of 8 μg/mL). Synthetic THC lengthened the duration of the lag phase by a factor of 21 per μg, while for the propagation phase showed an IC ≤ 1 μg/mL. Conversely, THC-A was unable to improve any parameter. Meanwhile, the presence of 1 μg of pure CBD and CBD-A increased the initial latency phase 4.8 and 9.4 times, respectively, but did not have an effect on the propagation phase.
Cannabis whole extracts acted on both phases of lipid oxidation in copper challenged LDL. Those effects were just partially related with the content of cannabinoids and partially recapitulated by isolated pure cannabinoids. Our results support the potentially beneficial effects of cannabis sativa whole extracts on the initial phase of atherosclerosis.
大麻具有多种治疗特性。然而,需要进一步研究以揭示大麻的药用潜力以及生物活性与化学特征之间的关系。
本研究的主要目的是表征乌拉圭可获得的三个大麻品种在成熟的不同阶段的化学特征和抗氧化特性。
分析了在花期结束时不同时间点采集的来自三种稳定表型的雌性花序的新鲜样本。通过氢核磁共振(H-NMR)对氯仿提取物进行化学表征。在铜诱导的低密度脂蛋白(LDL)氧化试验中测量大麻提取物和纯大麻素的抗氧化特性。
最幼嫩的花序中的主要大麻素为四氢大麻酚酸(THC-A,242±62毫克/克)和四氢大麻酚(THC,7.3±6.5毫克/克)。在两个成熟样本中,大麻素水平增加了两倍多。第三个样本显示THC-A和THC的浓度较低且恒定(分别为177±25和1±1)。富含THC-A/THC的大麻提取物使LDL氧化的延迟期每微克增加1.2至3.5倍,并减缓了脂质过氧化的传播阶段(半数抑制浓度[IC]为1.7至4.6微克/毫升)。富含大麻二酚(CBD,198毫克/克)和大麻二酚酸(CBD-A,92毫克/克)的工业大麻品种在LDL氧化过程中也能防止共轭二烯的形成。实际上,1微克提取物能够将延迟期延长3.7倍,并显著降低传播阶段的斜率(IC为8微克/毫升)。合成THC使延迟期的持续时间每微克延长21倍,而对于传播阶段,其半数抑制浓度≤1微克/毫升。相反,THC-A无法改善任何参数。同时,1微克纯CBD和CBD-A的存在分别使初始延迟期延长4.8倍和9.4倍,但对传播阶段没有影响。
大麻全提取物对铜刺激的LDL脂质氧化的两个阶段均有作用。这些作用仅部分与大麻素含量相关,且部分可由分离出的纯大麻素重现。我们的结果支持大麻全提取物对动脉粥样硬化初始阶段可能具有的有益作用。