Suppr超能文献

基于新模型的药代动力学稀疏采样研究的生物等效性统计方法。

New Model-Based Bioequivalence Statistical Approaches for Pharmacokinetic Studies with Sparse Sampling.

机构信息

University of Paris, IAME INSERM, UMR 1137, 75018, Paris, France.

University of Lille, CHU Lille, ULR 2694 - METRICS : Evaluation of Health Technologies and Medical Practices, F-59000, Lille, France.

出版信息

AAPS J. 2020 Oct 30;22(6):141. doi: 10.1208/s12248-020-00507-3.

Abstract

In traditional pharmacokinetic (PK) bioequivalence analysis, two one-sided tests (TOST) are conducted on the area under the concentration-time curve and the maximal concentration derived using a non-compartmental approach. When rich sampling is unfeasible, a model-based (MB) approach, using nonlinear mixed effect models (NLMEM) is possible. However, MB-TOST using asymptotic standard errors (SE) presents increased type I error when asymptotic conditions do not hold. In this work, we propose three alternative calculations of the SE based on (i) an adaptation to NLMEM of the correction proposed by Gallant, (ii) the a posteriori distribution of the treatment coefficient using the Hamiltonian Monte Carlo algorithm, and (iii) parametric random effects and residual errors bootstrap. We evaluate these approaches by simulations, for two-arms parallel and two-period, two-sequence cross-over design with rich (n = 10) and sparse (n = 3) sampling under the null and the alternative hypotheses, with MB-TOST. All new approaches correct for the inflation of MB-TOST type I error in PK studies with sparse designs. The approach based on the a posteriori distribution appears to be the best compromise between controlled type I errors and computing times. MB-TOST using non-asymptotic SE controls type I error rate better than when using asymptotic SE estimates for bioequivalence on PK studies with sparse sampling.

摘要

在传统的药代动力学(PK)生物等效性分析中,使用非房室模型方法对浓度-时间曲线下面积和最大浓度进行双边检验(TOST)。当无法进行丰富采样时,可以使用基于模型的(MB)方法,使用非线性混合效应模型(NLMEM)。然而,当渐近条件不成立时,基于渐近标准误差(SE)的 MB-TOST 会增加 I 型错误率。在这项工作中,我们提出了三种基于以下方法计算 SE 的替代方法:(i)Gallant 提出的修正方法在 NLMEM 中的适应性,(ii)使用 Hamiltonian 蒙特卡罗算法的治疗系数后验分布,以及(iii)参数随机效应和残差自举。我们通过模拟来评估这些方法,对于两种臂平行和两种周期、两种序列交叉设计,在零假设和替代假设下,使用 MB-TOST,进行了丰富(n=10)和稀疏(n=3)采样的 PK 研究。所有新方法都纠正了在稀疏设计的 PK 研究中 MB-TOST 型 I 错误率的膨胀。基于后验分布的方法似乎是在控制 I 型错误率和计算时间之间的最佳折衷。对于稀疏采样的 PK 研究,使用非渐近 SE 的 MB-TOST 比使用渐近 SE 估计进行生物等效性的控制更好。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验