Université Paris Cité and Université Sorbonne Paris Nord, Inserm, IAME, 75018, Paris, France.
Department of Biostatistics, Roche Innovation Center Basel, Basel, Switzerland.
J Pharmacokinet Pharmacodyn. 2022 Oct;49(5):557-577. doi: 10.1007/s10928-022-09821-z. Epub 2022 Sep 16.
This article evaluates the performance of pharmacokinetic (PK) equivalence testing between two formulations of a drug through the Two-One Sided Tests (TOST) by a model-based approach (MB-TOST), as an alternative to the classical non-compartmental approach (NCA-TOST), for a sparse design with a few time points per subject. We focused on the impact of model misspecification and the relevance of model selection for the reference data. We first analysed PK data from phase I studies of gantenerumab, a monoclonal antibody for the treatment of Alzheimer's disease. Using the original rich sample data, we compared MB-TOST to NCA-TOST for validation. Then, the analysis was repeated on a sparse subset of the original data with MB-TOST. This analysis inspired a simulation study with rich and sparse designs. With rich designs, we compared NCA-TOST and MB-TOST in terms of type I error and study power. With both designs, we explored the impact of misspecifying the model on the performance of MB-TOST and adding a model selection step. Using the observed data, the results of both approaches were in general concordance. MB-TOST results were robust with sparse designs when the underlying PK structural model was correctly specified. Using the simulated data with a rich design, the type I error of NCA-TOST was close to the nominal level. When using the simulated model, the type I error of MB-TOST was controlled on rich and sparse designs, but using a misspecified model led to inflated type I errors. Adding a model selection step on the reference data reduced the inflation. MB-TOST appears as a robust alternative to NCA-TOST, provided that the PK model is correctly specified and the test drug has the same PK structural model as the reference drug.
本文通过基于模型的方法(MB-TOST)评估了两种药物制剂之间的药代动力学(PK)等效性测试的性能,作为替代经典非隔室方法(NCA-TOST)的方法,用于每个受试者只有几个时间点的稀疏设计。我们专注于模型误设和参考数据模型选择的相关性的影响。我们首先分析了治疗阿尔茨海默病的单克隆抗体 gantenerumab 的 I 期研究的 PK 数据。使用原始丰富的样本数据,我们将 MB-TOST 与 NCA-TOST 进行了比较,以进行验证。然后,使用 MB-TOST 在原始数据的稀疏子集上重复分析。这项分析启发了一项丰富和稀疏设计的模拟研究。在丰富的设计中,我们比较了 NCA-TOST 和 MB-TOST 的 I 类错误和研究效力。对于两种设计,我们探讨了错误指定模型对 MB-TOST 性能的影响以及添加模型选择步骤的影响。使用观察数据,两种方法的结果通常是一致的。当底层 PK 结构模型正确指定时,MB-TOST 结果在稀疏设计中是稳健的。使用丰富设计的模拟数据,NCA-TOST 的 I 类错误接近名义水平。当使用模拟模型时,MB-TOST 的 I 类错误在丰富和稀疏设计中得到控制,但使用错误指定的模型会导致 I 类错误膨胀。在参考数据上添加模型选择步骤可以减少膨胀。MB-TOST 似乎是 NCA-TOST 的一种稳健替代方法,前提是 PK 模型正确指定并且测试药物具有与参考药物相同的 PK 结构模型。