Suppr超能文献

评价基于模型整合证据的方法在使用模型平均法的药代动力学生物等效性研究中的应用。

Evaluation of model-integrated evidence approaches for pharmacokinetic bioequivalence studies using model averaging methods.

机构信息

Department of Pharmacy, Uppsala University, Uppsala, Sweden.

Division of Quantitative Methods and Modelling, Office of Research and Standards, Office of Generic Drugs, Food and Drug Administration, Silver Spring, Maryland, USA.

出版信息

CPT Pharmacometrics Syst Pharmacol. 2024 Oct;13(10):1748-1761. doi: 10.1002/psp4.13217. Epub 2024 Aug 28.

Abstract

Conventional approaches for establishing bioequivalence (BE) between test and reference formulations using non-compartmental analysis (NCA) may demonstrate low power in pharmacokinetic (PK) studies with sparse sampling. In this case, model-integrated evidence (MIE) approaches for BE assessment have been shown to increase power, but may suffer from selection bias problems if models are built on the same data used for BE assessment. This work presents model averaging methods for BE evaluation and compares the power and type I error of these methods to conventional BE approaches for simulated studies of oral and ophthalmic formulations. Two model averaging methods were examined: bootstrap model selection and weight-based model averaging with parameter uncertainty from three different sources, either from a sandwich covariance matrix, a bootstrap, or from sampling importance resampling (SIR). The proposed approaches increased power compared with conventional NCA-based BE approaches, especially for the ophthalmic formulation scenarios, and were simultaneously able to adequately control type I error. In the rich sampling scenario considered for oral formulation, the weight-based model averaging method with SIR uncertainty provided controlled type I error, that was closest to the target of 5%. In sparse-sampling designs, especially the single sample ophthalmic scenarios, the type I error was best controlled by the bootstrap model selection method.

摘要

传统的使用非房室分析(NCA)来建立测试和参比制剂之间生物等效性(BE)的方法,在采样稀疏的药代动力学(PK)研究中可能显示出低功效。在这种情况下,用于 BE 评估的模型综合证据(MIE)方法已被证明可以提高功效,但如果模型是基于用于 BE 评估的相同数据构建的,则可能会受到选择偏差问题的影响。本研究提出了用于 BE 评估的模型平均方法,并将这些方法的功效和 I 型错误与口服和眼部制剂模拟研究中的传统 BE 方法进行了比较。检查了两种模型平均方法:自举模型选择和基于权重的模型平均,参数不确定性来自三个不同的来源,要么来自三明治协方差矩阵,要么来自自举,要么来自采样重要性重采样(SIR)。与传统的基于 NCA 的 BE 方法相比,所提出的方法提高了功效,特别是对于眼部制剂情况,同时能够充分控制 I 型错误。在考虑的口服制剂丰富采样方案中,基于 SIR 不确定性的加权模型平均方法提供了受控制的 I 型错误,最接近 5%的目标。在稀疏采样设计中,特别是单样本眼部情况,自举模型选择方法可以最好地控制 I 型错误。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/54d4/11494900/c48884bf8ea7/PSP4-13-1748-g002.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验