Department of Cardiology, Paracelsus Medical University of Salzburg, Austria; Division of Cardiology, Department of Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden.
Fondazione Bruno Kessler Research Institute, Trento, Italy.
Int J Med Inform. 2021 Jan;145:104312. doi: 10.1016/j.ijmedinf.2020.104312. Epub 2020 Oct 24.
To evaluate the application of machine learning methods, specifically Deep Neural Networks (DNN) models for intensive care (ICU) mortality prediction. The aim was to predict mortality within 96 hours after admission to mirror the clinical situation of patient evaluation after an ICU trial, which consists of 24-48 hours of ICU treatment and then "re-triage". The input variables were deliberately restricted to ABG values to maximise real-world practicability.
We retrospectively evaluated septic patients in the multi-centre eICU dataset as well as single centre MIMIC-III dataset. Included were all patients alive after 48 hours with available data on ABG (n = 3979 and n = 9655 ICU stays for the multi-centre and single centre respectively). The primary endpoint was 96 -h-mortality.
The model was developed using long short-term memory (LSTM), a type of DNN designed to learn temporal dependencies between variables. Input variables were all ABG values within the first 48 hours. The SOFA score (AUC of 0.72) was moderately predictive. Logistic regression showed good performance (AUC of 0.82). The best performance was achieved by the LSTM-based model with AUC of 0.88 in the multi-centre study and AUC of 0.85 in the single centre study.
An LSTM-based model could help physicians with the "re-triage" and the decision to restrict treatment in patients with a poor prognosis.
评估机器学习方法,特别是深度学习神经网络(DNN)模型在重症监护(ICU)死亡率预测中的应用。目的是预测入院后 96 小时内的死亡率,以模拟 ICU 试验后患者评估的临床情况,包括 ICU 治疗 24-48 小时后进行“重新分类”。输入变量故意限制为 ABG 值,以最大限度地提高实际应用的可行性。
我们回顾性评估了多中心 eICU 数据集和单中心 MIMIC-III 数据集的脓毒症患者。包括所有在 48 小时后存活且 ABG 数据可用的患者(多中心和单中心分别为 3979 例和 9655 例 ICU 入住)。主要终点为 96 小时死亡率。
该模型使用长短期记忆(LSTM)开发,LSTM 是一种专门用于学习变量之间时间依赖关系的 DNN 类型。输入变量均为前 48 小时内的所有 ABG 值。SOFA 评分(AUC 为 0.72)具有中等预测能力。逻辑回归显示出良好的性能(AUC 为 0.82)。基于 LSTM 的模型在多中心研究中的 AUC 为 0.88,在单中心研究中的 AUC 为 0.85,表现最佳。
基于 LSTM 的模型可以帮助医生进行“重新分类”,并在预后不良的患者中决定限制治疗。