文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

体内和体外多糖的免疫刺激作用及其对 RAW246.7 巨噬细胞的激活机制。

Immunostimulatory Effects of Polysaccharides from In Vivo and Vitro and Their Activation Mechanism on RAW246.7 Macrophages.

机构信息

Department of Biology & Guangdong Provincial Key Laboratory of Marine Biotechnology, Institute of Marine Sciences, College of Science, Shantou University, Shantou 515063, China.

出版信息

Mar Drugs. 2020 Oct 28;18(11):538. doi: 10.3390/md18110538.


DOI:10.3390/md18110538
PMID:33126624
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC7692637/
Abstract

In this study, (S.p.) polysaccharide (PSP) was obtained by ultrasonic-microwave-assisted extraction (UMAE) and purified by an aqueous two-phase system (ATPS). Two different methods were applied to purified (S.p.) polysaccharide (PSP), respectively, due to PSP as a complex multi-component system. Three polysaccharide fractions (PSP-1, PSP-2, and PSP-3) with different acidic groups were obtained after PSP was fractionated by the diethyl aminoethyl (DEAE)-52 cellulose chromatography, and two polysaccharide fractions (PSP-L and PSP-H) with different molecular weight were obtained by ultrafiltration centrifugation. The chemoprotective effects of PSP in cyclophosphamide (Cy) treated mice were investigated. The results showed that PSP could significantly increase spleen and thymus index, peripheral white blood cells (PWBC), and peripheral blood lymphocytes (PBL). The in vivo immunostimulatory assays demonstrated that PSP could in dose-dependent increase of TNF-α, IL-10, and IFN-γ production in sera. The in vitro immunostimulatory assays showed that PSP and its fractions (PSPs) could evidently enhance the proliferation of splenocytes and RAW 264.7 cells and increase the productions of nitric oxide (NO), tumor necrosis factor-α (TNF-α), and interleukin 6 (IL-6). PSPs could also enhance phagocytic activity of RAW 264.7 cells. The acidic polysaccharide fractions of PSP-2, PSP-3, and PSP-L with small molecular weight had the higher immunostimulatory activity. Signaling pathway research results indicated that PSP-L activated RAW264.7 cells through MAPKs, NF-κB signaling pathways via TLR4 receptor.

摘要

在这项研究中,(S.p.)多糖(PSP)通过超声微波辅助提取(UMAE)获得,并通过双水相体系(ATPS)纯化。由于 PSP 是一种复杂的多组分体系,因此分别应用了两种不同的方法来纯化(S.p.)多糖(PSP)。PSP 通过 DEAE-52 纤维素色谱分离后,得到三个具有不同酸性基团的多糖级分(PSP-1、PSP-2 和 PSP-3),超滤离心得到两个具有不同分子量的多糖级分(PSP-L 和 PSP-H)。研究了 PSP 在环磷酰胺(Cy)处理的小鼠中的化学保护作用。结果表明,PSP 可显著增加脾和胸腺指数、外周白细胞(PWBC)和外周血淋巴细胞(PBL)。体内免疫刺激试验表明,PSP 可剂量依赖性增加血清中 TNF-α、IL-10 和 IFN-γ的产生。体外免疫刺激试验表明,PSP 及其级分(PSPs)可明显增强脾细胞和 RAW 264.7 细胞的增殖,并增加一氧化氮(NO)、肿瘤坏死因子-α(TNF-α)和白细胞介素 6(IL-6)的产生。PSPs 还可以增强 RAW 264.7 细胞的吞噬活性。具有小分子量的酸性多糖级分 PSP-2、PSP-3 和 PSP-L 具有更高的免疫刺激活性。信号通路研究结果表明,PSP-L 通过 TLR4 受体激活 RAW264.7 细胞通过 MAPKs、NF-κB 信号通路。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/de04/7692637/09c377a98fe0/marinedrugs-18-00538-g014.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/de04/7692637/fc57b6249eff/marinedrugs-18-00538-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/de04/7692637/f02a1a21b202/marinedrugs-18-00538-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/de04/7692637/3f314b762869/marinedrugs-18-00538-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/de04/7692637/6cd43e97e564/marinedrugs-18-00538-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/de04/7692637/af030a827a13/marinedrugs-18-00538-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/de04/7692637/1626bf4051fc/marinedrugs-18-00538-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/de04/7692637/ba5d56aac4da/marinedrugs-18-00538-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/de04/7692637/4e377d2cf8d0/marinedrugs-18-00538-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/de04/7692637/397105ccce7c/marinedrugs-18-00538-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/de04/7692637/6e4f2409f017/marinedrugs-18-00538-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/de04/7692637/89607bdb314e/marinedrugs-18-00538-g011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/de04/7692637/5454b0cd5083/marinedrugs-18-00538-g012.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/de04/7692637/8123ceabeb01/marinedrugs-18-00538-g013.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/de04/7692637/09c377a98fe0/marinedrugs-18-00538-g014.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/de04/7692637/fc57b6249eff/marinedrugs-18-00538-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/de04/7692637/f02a1a21b202/marinedrugs-18-00538-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/de04/7692637/3f314b762869/marinedrugs-18-00538-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/de04/7692637/6cd43e97e564/marinedrugs-18-00538-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/de04/7692637/af030a827a13/marinedrugs-18-00538-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/de04/7692637/1626bf4051fc/marinedrugs-18-00538-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/de04/7692637/ba5d56aac4da/marinedrugs-18-00538-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/de04/7692637/4e377d2cf8d0/marinedrugs-18-00538-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/de04/7692637/397105ccce7c/marinedrugs-18-00538-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/de04/7692637/6e4f2409f017/marinedrugs-18-00538-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/de04/7692637/89607bdb314e/marinedrugs-18-00538-g011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/de04/7692637/5454b0cd5083/marinedrugs-18-00538-g012.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/de04/7692637/8123ceabeb01/marinedrugs-18-00538-g013.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/de04/7692637/09c377a98fe0/marinedrugs-18-00538-g014.jpg

相似文献

[1]
Immunostimulatory Effects of Polysaccharides from In Vivo and Vitro and Their Activation Mechanism on RAW246.7 Macrophages.

Mar Drugs. 2020-10-28

[2]
A polysaccharide isolated from the fruits of Physalis alkekengi L. induces RAW264.7 macrophages activation via TLR2 and TLR4-mediated MAPK and NF-κB signaling pathways.

Int J Biol Macromol. 2019-8-20

[3]
In vitro and in vivo immunostimulatory activity of an exopolysaccharide-enriched fraction from Bacillus subtilis.

J Appl Microbiol. 2015-3

[4]
A study on immunomodulatory mechanism of Polysaccharopeptide mediated by TLR4 signaling pathway.

BMC Immunol. 2015-6-2

[5]
Inhibitory effects of polysaccharide extract from Spirulina platensis on corneal neovascularization.

Mol Vis. 2009-9-24

[6]
Purification, characterization and immunostimulatory activity of polysaccharide from Cipangopaludina chinensis.

Carbohydr Polym. 2013-6-4

[7]
Characterization and Immunological Activities of Polysaccharides from Polygonatum sibiricum.

Biol Pharm Bull. 2020

[8]
Immunomodulatory effects exerted by Poria Cocos polysaccharides via TLR4/TRAF6/NF-κB signaling in vitro and in vivo.

Biomed Pharmacother. 2019-3-1

[9]
Structural characterization, and in vitro immunostimulatory and antitumor activity of an acid polysaccharide from Spirulina platensis.

Int J Biol Macromol. 2022-1-31

[10]
Polysaccharide PRM3 from Rhynchosia minima root enhances immune function through TLR4-NF-κB pathway.

Biochim Biophys Acta Gen Subj. 2018-5-13

引用本文的文献

[1]
Valorization of Food Waste: Extracting Bioactive Compounds for Sustainable Health and Environmental Solutions.

Antioxidants (Basel). 2025-6-11

[2]
Effects of Phytogenic Feed Additive on Production Performance, Slaughtering Performance, Meat Quality, and Intestinal Flora of White-Feathered Broilers.

Vet Sci. 2025-4-22

[3]
Phycochemistry and pharmacological significance of filamentous cyanobacterium Spirulina sp.

Bioresour Bioprocess. 2025-4-3

[4]
Characterization and Otoprotective Effects of Polysaccharides from .

Molecules. 2025-1-8

[5]
Polysaccharide extract of Spirulina sp. increases effector immune-cell killing activities against cholangiocarcinoma.

PLoS One. 2024

[6]
Optimization of Ultrasonic-Assisted Extraction, Characterization and Antioxidant and Immunoregulatory Activities of Polysaccharides.

Molecules. 2024-9-30

[7]
Cyclophosphamide ameliorates membranous nephropathy by upregulating miR-223 expression, promoting M2 macrophage polarization and inhibiting inflammation.

Technol Health Care. 2024

[8]
Restoration of mitochondrial function by polysaccharide via upregulated SOD2 in aging fibroblasts.

iScience. 2023-6-14

[9]
Chemical Characterization and Immunomodulatory Activity of Fucoidan from .

Mar Drugs. 2022-12-26

[10]
Effect of Ultrasonic Irradiation on the Physicochemical and Structural Properties of Polysaccharides and Their Performance in Biological Activities.

Molecules. 2022-12-20

本文引用的文献

[1]
Quality control and immunological activity of lentinan samples produced in China.

Int J Biol Macromol. 2020-9-15

[2]
Effect of Lentinan on Peyer's patch structure and function in an immunosuppressed mouse model.

Int J Biol Macromol. 2019-6-28

[3]
Purification, molecular properties, structural characterization, and immunomodulatory activities of water soluble polysaccharides from Sargassum angustifolium.

Int J Biol Macromol. 2017-11-10

[4]
Immune-enhancing effects of polysaccharides extracted from Lilium lancifolium Thunb.

Int Immunopharmacol. 2017-10-12

[5]
Sulfated polysaccharide from Cyclocarya paliurus enhances the immunomodulatory activity of macrophages.

Carbohydr Polym. 2017-7-5

[6]
Immunomodulatory and antioxidant effects of total flavonoids of Spatholobus suberectus Dunn on PCV2 infected mice.

Sci Rep. 2017-8-17

[7]
Separation of polysaccharides from Spirulina platensis by HSCCC with ethanol-ammonium sulfate ATPS and their antioxidant activities.

Carbohydr Polym. 2017-6-12

[8]
Structural characterization and immunomodulatory activity of a new polysaccharide from jellyfish.

Carbohydr Polym. 2016-12-16

[9]
Structural characterization and macrophage immunomodulatory activity of a novel polysaccharide from Smilax glabra Roxb.

Carbohydr Polym. 2016-9-13

[10]
Phagocytosis: An Immunobiologic Process.

Immunity. 2016-3-15

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索