Suppr超能文献

减少数字病理学中的注释工作:用于分类任务的协同表示学习框架。

Reducing annotation effort in digital pathology: A Co-Representation learning framework for classification tasks.

机构信息

IBM Zurich Research Lab, Zurich, Switzerland; Computer-Assisted Applications in Medicine, ETH Zurich, Zurich, Switzerland.

IBM Zurich Research Lab, Zurich, Switzerland.

出版信息

Med Image Anal. 2021 Jan;67:101859. doi: 10.1016/j.media.2020.101859. Epub 2020 Oct 9.

Abstract

Classification of digital pathology images is imperative in cancer diagnosis and prognosis. Recent advancements in deep learning and computer vision have greatly benefited the pathology workflow by developing automated solutions for classification tasks. However, the cost and time for acquiring high quality task-specific large annotated training data are subject to intra- and inter-observer variability, thus challenging the adoption of such tools. To address these challenges, we propose a classification framework via co-representation learning to maximize the learning capability of deep neural networks while using a reduced amount of training data. The framework captures the class-label information and the local spatial distribution information by jointly optimizing a categorical cross-entropy objective and a deep metric learning objective respectively. A deep metric learning objective is incorporated to enhance the classification, especially in the low training data regime. Further, a neighborhood-aware multiple similarity sampling strategy, and a soft-multi-pair objective that optimizes interactions between multiple informative sample pairs, is proposed to accelerate deep metric learning. We evaluate the proposed framework on five benchmark datasets from three digital pathology tasks, i.e., nuclei classification, mitosis detection, and tissue type classification. For all the datasets, our framework achieves state-of-the-art performance when using approximately only 50% of the training data. On using complete training data, the proposed framework outperforms the state-of-the-art on all the five datasets.

摘要

数字病理学图像的分类在癌症诊断和预后中至关重要。深度学习和计算机视觉的最新进展通过为分类任务开发自动化解决方案,极大地改善了病理学工作流程。然而,获取高质量、特定于任务的大型标注训练数据的成本和时间受到观察者内和观察者间变异性的影响,因此这些工具的采用具有挑战性。为了解决这些挑战,我们提出了一种通过共同表示学习的分类框架,以最大限度地提高深度神经网络的学习能力,同时使用较少的训练数据。该框架通过联合优化分类交叉熵目标和深度度量学习目标来分别捕获类别标签信息和局部空间分布信息。我们引入了深度度量学习目标来增强分类能力,特别是在训练数据较少的情况下。此外,我们提出了一种基于邻域感知的多相似性采样策略和一种软多对目标,以优化多个信息丰富的样本对之间的相互作用,从而加速深度度量学习。我们在来自三个数字病理学任务(即核分类、有丝分裂检测和组织类型分类)的五个基准数据集上评估了所提出的框架。对于所有数据集,当使用大约 50%的训练数据时,我们的框架实现了最先进的性能。当使用完整的训练数据时,所提出的框架在所有五个数据集上都优于最先进的方法。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验