Suppr超能文献

快速标注器:一个基于开源数字病理学的快速图像标注工具。

Quick Annotator: an open-source digital pathology based rapid image annotation tool.

机构信息

Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, USA.

Toth Technology LLC, Dover, NJ, USA.

出版信息

J Pathol Clin Res. 2021 Nov;7(6):542-547. doi: 10.1002/cjp2.229. Epub 2021 Jul 19.

Abstract

Image-based biomarker discovery typically requires accurate segmentation of histologic structures (e.g. cell nuclei, tubules, and epithelial regions) in digital pathology whole slide images (WSIs). Unfortunately, annotating each structure of interest is laborious and often intractable even in moderately sized cohorts. Here, we present an open-source tool, Quick Annotator (QA), designed to improve annotation efficiency of histologic structures by orders of magnitude. While the user annotates regions of interest (ROIs) via an intuitive web interface, a deep learning (DL) model is concurrently optimized using these annotations and applied to the ROI. The user iteratively reviews DL results to either (1) accept accurately annotated regions or (2) correct erroneously segmented structures to improve subsequent model suggestions, before transitioning to other ROIs. We demonstrate the effectiveness of QA over comparable manual efforts via three use cases. These include annotating (1) 337,386 nuclei in 5 pancreatic WSIs, (2) 5,692 tubules in 10 colorectal WSIs, and (3) 14,187 regions of epithelium in 10 breast WSIs. Efficiency gains in terms of annotations per second of 102×, 9×, and 39× were, respectively, witnessed while retaining f-scores >0.95, suggesting that QA may be a valuable tool for efficiently fully annotating WSIs employed in downstream biomarker studies.

摘要

基于图像的生物标志物发现通常需要在数字病理学全切片图像 (WSI) 中准确分割组织学结构(例如细胞核、小管和上皮区域)。不幸的是,即使在中等大小的队列中,注释每个感兴趣的结构也是费力且通常难以解决的。在这里,我们提出了一个开源工具,即快速注释器 (Quick Annotator,QA),旨在通过数量级提高组织学结构注释的效率。当用户通过直观的 Web 界面注释感兴趣的区域 (ROI) 时,一个深度学习 (DL) 模型会同时使用这些注释进行优化,并应用于 ROI。用户会反复查看 DL 结果,要么 (1) 接受准确注释的区域,要么 (2) 纠正错误分割的结构,以提高后续模型建议的准确性,然后再转到其他 ROI。我们通过三个用例证明了 QA 相对于可比手动工作的有效性。这些用例包括注释 (1) 5 个胰腺 WSI 中的 337386 个细胞核、(2) 10 个结直肠 WSI 中的 5692 个小管和 (3) 10 个乳腺 WSI 中的 14187 个上皮区域。在保留 f-score>0.95 的情况下,分别见证了每秒注释数提高了 102×、9× 和 39×的效率增益,这表明 QA 可能是一种非常有价值的工具,可用于高效地完全注释用于下游生物标志物研究的 WSI。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5f20/8503896/726e8afa9d50/CJP2-7-542-g003.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验