文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

磁场方向与拓扑支架协同作用以增强间充质干细胞软骨生成。

Directionalities of magnetic fields and topographic scaffolds synergise to enhance MSC chondrogenesis.

作者信息

Celik Cenk, Franco-Obregón Alfredo, Lee Eng Hin, Hui James Hp, Yang Zheng

机构信息

Department of Orthopaedic Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228.

Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 119228; BioIonic Currents Electromagnetic Pulsing Systems Laboratory, BICEPS, National University of Singapore, Singapore, 117599; Institute for Health Innovation & Technology, iHealthtech, National University of Singapore, Singapore, 117599; Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, DSO (Kent Ridge) Building, #04-01, 27 Medical Drive, Singapore, 117593.

出版信息

Acta Biomater. 2021 Jan 1;119:169-183. doi: 10.1016/j.actbio.2020.10.039. Epub 2020 Oct 29.


DOI:10.1016/j.actbio.2020.10.039
PMID:33130304
Abstract

Mesenchymal stem cell (MSC) chondrogenesis is modulated by diverse biophysical cues. We have previously shown that brief, low-amplitude pulsed electromagnetic fields (PEMFs) differentially enhance MSC chondrogenesis in scaffold-free pellet cultures versus conventional tissue culture plastic (TCP), indicating an interplay between magnetism and micromechanical environment. Here, we examined the influence of PEMF directionality over the chondrogenic differentiation of MSCs laden on electrospun fibrous scaffolds of either random (RND) or aligned (ALN) orientations. Correlating MSCs' chondrogenic outcome to pFAK activation and YAP localisation, MSCs on the RND scaffolds experienced the least amount of resting mechanical stress and underwent greatest chondrogenic differentiation in response to brief PEMF exposure (10 min at 1 mT) perpendicular to the dominant plane of the scaffolds (Z-directed). By contrast, in MSC-impregnated RND scaffolds, greatest mitochondrial respiration resulted from X-directed PEMF exposure (parallel to the scaffold plane), and was associated with curtailed chondrogenesis. MSCs on TCP or the ALN scaffolds exhibited greater resting mechanical stress and accordingly, were unresponsive, or negatively responsive, to PEMF exposure from all directions. The efficacy of PEMF-induced MSC chondrogenesis is hence regulated in a multifaceted manner involving focal adhesion dynamics, as well as mitochondrial responses, culminating in a final cellular response. The combined contributions of micromechanical environment and magnetic field orientation hence will need to be considered when designing magnetic exposure paradigms.

摘要

间充质干细胞(MSC)的软骨形成受到多种生物物理信号的调节。我们之前已经表明,短暂的低振幅脉冲电磁场(PEMF)在无支架微球培养中与传统组织培养塑料(TCP)相比,对MSC软骨形成有不同程度的增强作用,这表明磁性和微机械环境之间存在相互作用。在此,我们研究了PEMF方向性对负载于随机(RND)或定向(ALN)取向的电纺纤维支架上的MSC软骨分化的影响。将MSC的软骨形成结果与pFAK激活和YAP定位相关联,RND支架上的MSC承受的静息机械应力最小,并且在垂直于支架主平面(Z方向)的短暂PEMF暴露(1 mT下10分钟)后经历最大程度的软骨分化。相比之下,在MSC浸渍的RND支架中,X方向的PEMF暴露(平行于支架平面)导致最大的线粒体呼吸作用,并与软骨形成减少相关。TCP或ALN支架上的MSC表现出更大的静息机械应力,因此对来自所有方向的PEMF暴露无反应或产生负反应。因此,PEMF诱导的MSC软骨形成的功效以多方面的方式受到调节,涉及粘着斑动力学以及线粒体反应,最终导致最终的细胞反应。因此,在设计磁暴露模式时,需要考虑微机械环境和磁场方向的综合作用。

相似文献

[1]
Directionalities of magnetic fields and topographic scaffolds synergise to enhance MSC chondrogenesis.

Acta Biomater. 2021-1-1

[2]
Pulsed electromagnetic fields potentiate the paracrine function of mesenchymal stem cells for cartilage regeneration.

Stem Cell Res Ther. 2020-2-3

[3]
Enhancement of mesenchymal stem cell chondrogenesis with short-term low intensity pulsed electromagnetic fields.

Sci Rep. 2017-8-25

[4]
Chondrogenic Priming at Reduced Cell Density Enhances Cartilage Adhesion of Equine Allogeneic MSCs - a Loading Sensitive Phenomenon in an Organ Culture Study with 180 Explants.

Cell Physiol Biochem. 2015

[5]
Pulsed electromagnetic fields potentiate bone marrow mesenchymal stem cell chondrogenesis by regulating the Wnt/β-catenin signaling pathway.

J Transl Med. 2024-8-6

[6]
Electromagnetic fields enhance chondrogenesis of human adipose-derived stem cells in a chondrogenic microenvironment in vitro.

J Appl Physiol (1985). 2012-12-13

[7]
Chondrogenic preconditioning of mesenchymal stem/stromal cells within a magnetic scaffold for osteochondral repair.

Biofabrication. 2022-3-14

[8]
Pulsed Electromagnetic Field Stimulation in Osteogenesis and Chondrogenesis: Signaling Pathways and Therapeutic Implications.

Int J Mol Sci. 2021-1-15

[9]
Electrospun fibers enhanced the paracrine signaling of mesenchymal stem cells for cartilage regeneration.

Stem Cell Res Ther. 2021-2-3

[10]
Scaffold composition affects cytoskeleton organization, cell-matrix interaction and the cellular fate of human mesenchymal stem cells upon chondrogenic differentiation.

Biomaterials. 2015-2-26

引用本文的文献

[1]
Insights into bone and cartilage responses to pulsed electromagnetic field stimulation: a review with quantitative comparisons.

Front Bioeng Biotechnol. 2025-7-10

[2]
Topographical cues of biomaterials and fibroblast activation: Are they related?

Mechanobiol Med. 2023-10-31

[3]
Bioactive Materials That Promote the Homing of Endogenous Mesenchymal Stem Cells to Improve Wound Healing.

Int J Nanomedicine. 2024

[4]
Harmonizing Magnetic Mitohormetic Regenerative Strategies: Developmental Implications of a Calcium-Mitochondrial Axis Invoked by Magnetic Field Exposure.

Bioengineering (Basel). 2023-10-10

[5]
Electromagnetic fields regulate calcium-mediated cell fate of stem cells: osteogenesis, chondrogenesis and apoptosis.

Stem Cell Res Ther. 2023-5-16

[6]
3D printed pore morphology mediates bone marrow stem cell behaviors via RhoA/ROCK2 signaling pathway for accelerating bone regeneration.

Bioact Mater. 2023-3-20

[7]
Insights into the Molecular Mechanisms Regulating Cell Behavior in Response to Magnetic Materials and Magnetic Stimulation in Stem Cell (Neurogenic) Differentiation.

Int J Mol Sci. 2023-1-19

[8]
Harnessing electromagnetic fields to assist bone tissue engineering.

Stem Cell Res Ther. 2023-1-11

[9]
Gelatin Meshes Enriched with Graphene Oxide and Magnetic Nanoparticles Support and Enhance the Proliferation and Neuronal Differentiation of Human Adipose-Derived Stem Cells.

Int J Mol Sci. 2022-12-29

[10]
Ion elemental-optimized layered double hydroxide nanoparticles promote chondrogenic differentiation and intervertebral disc regeneration of mesenchymal stem cells through focal adhesion signaling pathway.

Bioact Mater. 2022-9-26

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索