文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

协调磁线粒体应激再生策略:磁场暴露引发的钙 - 线粒体轴的发育意义

Harmonizing Magnetic Mitohormetic Regenerative Strategies: Developmental Implications of a Calcium-Mitochondrial Axis Invoked by Magnetic Field Exposure.

作者信息

Franco-Obregón Alfredo

机构信息

Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore.

Institute of Health Technology and Innovation (iHealthtech), National University of Singapore, Singapore 117599, Singapore.

出版信息

Bioengineering (Basel). 2023 Oct 10;10(10):1176. doi: 10.3390/bioengineering10101176.


DOI:10.3390/bioengineering10101176
PMID:37892906
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC10604793/
Abstract

Mitohormesis is a process whereby mitochondrial stress responses, mediated by reactive oxygen species (ROS), act cumulatively to either instill survival adaptations (low ROS levels) or to produce cell damage (high ROS levels). The mitohormetic nature of extremely low-frequency electromagnetic field (ELF-EMF) exposure thus makes it susceptible to extraneous influences that also impinge on mitochondrial ROS production and contribute to the collective response. Consequently, magnetic stimulation paradigms are prone to experimental variability depending on diverse circumstances. The failure, or inability, to control for these factors has contributed to the existing discrepancies between published reports and in the interpretations made from the results generated therein. Confounding environmental factors include ambient magnetic fields, temperature, the mechanical environment, and the conventional use of aminoglycoside antibiotics. Biological factors include cell type and seeding density as well as the developmental, inflammatory, or senescence statuses of cells that depend on the prior handling of the experimental sample. Technological aspects include magnetic field directionality, uniformity, amplitude, and duration of exposure. All these factors will exhibit manifestations at the level of ROS production that will culminate as a unified cellular response in conjunction with magnetic exposure. Fortunately, many of these factors are under the control of the experimenter. This review will focus on delineating areas requiring technical and biological harmonization to assist in the designing of therapeutic strategies with more clearly defined and better predicted outcomes and to improve the mechanistic interpretation of the generated data, rather than on precise applications. This review will also explore the underlying mechanistic similarities between magnetic field exposure and other forms of biophysical stimuli, such as mechanical stimuli, that mutually induce elevations in intracellular calcium and ROS as a prerequisite for biological outcome. These forms of biophysical stimuli commonly invoke the activity of transient receptor potential cation channel classes, such as TRPC1.

摘要

线粒体应激反应是一个过程,在此过程中,由活性氧(ROS)介导的线粒体应激反应会累积作用,以产生生存适应性(低ROS水平)或导致细胞损伤(高ROS水平)。因此,极低频电磁场(ELF - EMF)暴露的线粒体应激效应使其容易受到其他也会影响线粒体ROS产生并促成集体反应的外部影响。因此,磁刺激模式容易因不同情况而出现实验变异性。未能控制这些因素导致了已发表报告之间以及从中得出的结果解释中存在现有差异。混杂的环境因素包括环境磁场、温度、机械环境以及氨基糖苷类抗生素的常规使用。生物学因素包括细胞类型、接种密度以及细胞的发育、炎症或衰老状态,这些取决于实验样本的先前处理情况。技术方面包括磁场的方向性、均匀性、幅度和暴露持续时间。所有这些因素都会在ROS产生水平上表现出来,并最终与磁暴露一起作为统一的细胞反应。幸运的是,其中许多因素都在实验者的控制之下。本综述将重点描述需要技术和生物学协调的领域,以协助设计具有更明确界定和更好预测结果的治疗策略,并改善对所生成数据的机制解释,而不是精确应用。本综述还将探讨磁场暴露与其他形式的生物物理刺激(如机械刺激)之间潜在的机制相似性,这些刺激相互诱导细胞内钙和ROS升高,作为生物学结果的先决条件。这些形式的生物物理刺激通常会激活瞬时受体电位阳离子通道类别的活性,如TRPC1。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/79cf/10604793/605ecf97de55/bioengineering-10-01176-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/79cf/10604793/f2951c132ff0/bioengineering-10-01176-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/79cf/10604793/703d6eaf7c6d/bioengineering-10-01176-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/79cf/10604793/9f07fd696aaf/bioengineering-10-01176-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/79cf/10604793/605ecf97de55/bioengineering-10-01176-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/79cf/10604793/f2951c132ff0/bioengineering-10-01176-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/79cf/10604793/703d6eaf7c6d/bioengineering-10-01176-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/79cf/10604793/9f07fd696aaf/bioengineering-10-01176-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/79cf/10604793/605ecf97de55/bioengineering-10-01176-g004.jpg

相似文献

[1]
Harmonizing Magnetic Mitohormetic Regenerative Strategies: Developmental Implications of a Calcium-Mitochondrial Axis Invoked by Magnetic Field Exposure.

Bioengineering (Basel). 2023-10-10

[2]
Synergistic Cellular Responses Conferred by Concurrent Optical and Magnetic Stimulation Are Attenuated by Simultaneous Exposure to Streptomycin: An Antibiotic Dilemma.

Bioengineering (Basel). 2024-6-21

[3]
Ambient and supplemental magnetic fields promote myogenesis a TRPC1-mitochondrial axis: evidence of a magnetic mitohormetic mechanism.

FASEB J. 2019-9-13

[4]
Pulsed electromagnetic fields synergize with graphene to enhance dental pulp stem cell-derived neurogenesis by selectively targeting TRPC1 channels.

Eur Cell Mater. 2021-3-1

[5]
Translational Metabolomics of Head Injury: Exploring Dysfunctional Cerebral Metabolism with Ex Vivo NMR Spectroscopy-Based Metabolite Quantification

2015

[6]
Are Aminoglycoside Antibiotics TRPing Your Metabolic Switches?

Cells. 2024-7-29

[7]
Assessment of the neurotoxic potential of exposure to 50Hz extremely low frequency electromagnetic fields (ELF-EMF) in naïve and chemically stressed PC12 cells.

Neurotoxicology. 2014-9

[8]
Magnetic Fields and Reactive Oxygen Species.

Int J Mol Sci. 2017-10-18

[9]
Extremely low frequency electromagnetic fields as effectors of cellular responses in vitro: possible immune cell activation.

J Cell Biochem. 2004-9-1

[10]
EUROPAEM EMF Guideline 2016 for the prevention, diagnosis and treatment of EMF-related health problems and illnesses.

Rev Environ Health. 2016-9-1

引用本文的文献

[1]
Fecal Microbiota Transplantation from Mice Receiving Magnetic Mitohormesis Treatment Reverses High-Fat Diet-Induced Metabolic and Osteogenic Dysfunction.

Int J Mol Sci. 2025-6-6

[2]
Brief Weekly Magnetic Field Exposure Enhances Avian Oxidative Muscle Character During Embryonic Development.

Int J Mol Sci. 2025-6-5

[3]
Frequency-Dependent Antioxidant Responses in HT-1080 Human Fibrosarcoma Cells Exposed to Weak Radio Frequency Fields.

Antioxidants (Basel). 2024-10-15

[4]
Cellular and Molecular Effects of Magnetic Fields.

Int J Mol Sci. 2024-8-17

[5]
Are Aminoglycoside Antibiotics TRPing Your Metabolic Switches?

Cells. 2024-7-29

[6]
Exploring Mitochondrial Interactions with Pulsed Electromagnetic Fields: An Insightful Inquiry into Strategies for Addressing Neuroinflammation and Oxidative Stress in Diabetic Neuropathy.

Int J Mol Sci. 2024-7-16

[7]
Synergistic Cellular Responses Conferred by Concurrent Optical and Magnetic Stimulation Are Attenuated by Simultaneous Exposure to Streptomycin: An Antibiotic Dilemma.

Bioengineering (Basel). 2024-6-21

[8]
Quantitative measurements of reactive oxygen species partitioning in electron transfer flavoenzyme magnetic field sensing.

Front Physiol. 2024-2-2

本文引用的文献

[1]
Impact of weak radiofrequency and static magnetic fields on key signaling molecules, intracellular pH, membrane potential, and cell growth in HT-1080 fibrosarcoma cells.

Sci Rep. 2023-8-30

[2]
The Developmental Implications of Muscle-Targeted Magnetic Mitohormesis: A Human Health and Longevity Perspective.

Bioengineering (Basel). 2023-8-12

[3]
Stress Factors as Possible Regulators of Pluripotent Stem Cell Survival and Differentiation.

Biology (Basel). 2023-8-11

[4]
Low-Level Photobiomodulation Therapy Modulates HO Production, TRPC-6, and PGC-1α Levels in the Dystrophic Muscle.

Photobiomodul Photomed Laser Surg. 2023-8

[5]
Concurrent Optical- and Magnetic-Stimulation-Induced Changes on Wound Healing Parameters, Analyzed by Hyperspectral Imaging: An Exploratory Case Series.

Bioengineering (Basel). 2023-6-23

[6]
TRP Channels in Tumoral Processes Mediated by Oxidative Stress and Inflammation.

Antioxidants (Basel). 2023-6-23

[7]
Reciprocal Effect of Environmental Stimuli to Regulate the Adipogenesis and Osteogenesis Fate Decision in Bone Marrow-Derived Mesenchymal Stem Cells (BM-MSCs).

Cells. 2023-5-16

[8]
Ionizing Radiation, Antioxidant Response and Oxidative Damage: Radiomodulators.

Antioxidants (Basel). 2023-6-5

[9]
Platelet Mechanotransduction: Regulatory Cross Talk Between Mechanosensitive Receptors and Calcium Channels.

Arterioscler Thromb Vasc Biol. 2023-8

[10]
Photobiomodulation at molecular, cellular, and systemic levels.

Lasers Med Sci. 2023-6-13

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索