Suppr超能文献

基于级联卷积神经网络的甲状腺滤泡性肿瘤分割与分类。

Segmentation and classification of thyroid follicular neoplasm using cascaded convolutional neural network.

机构信息

School of Computer and Information Engineering, Zhejiang Gongshang University, Hangzhou 310018, People's Republic of China.

Bailin Yang and Meiying Yan are co-first authors.

出版信息

Phys Med Biol. 2020 Dec 22;65(24):245040. doi: 10.1088/1361-6560/abc6f2.

Abstract

In this paper, we present a segmentation and classification method for thyroid follicular neoplasms based on a combination of the prior-based level set method and deep convolutional neural network. The proposed method aims to discriminate thyroid follicular adenoma (TFA) and follicular thyroid carcinoma (FTC) in ultrasound images. In their appearance, these two kinds of tumours have similar shapes, sizes and contrasts. Therefore, it is difficult for even ultrasound specialists to distinguish them. Because of the complex background in thyroid ultrasound images, before distinguishing TFA and FTC, we need to segment the lesions from the whole image for each patient. The main challenge of segmentation is that the images often have weak edges and heterogeneous regions. The main issue of classification is that the accuracy depends on the features extracted from the segmentation results. To solve these problems, we conduct the two tasks, i.e. segmentation and classification, by a cascaded learning architecture. For segmentation, to obtain more accurate results, we exploit the Res-U-net framework and the prior-based level set method to enhance their respective abilities. Then, the classification network is trained by sharing shallow layers of the segmentation network. Testing the proposed method on real patient data shows that it is able to segment the lesion areas in thyroid ultrasound images with a Dice score of 92.65% and to distinguish TFA and FTC with a classification accuracy of 96.00%.

摘要

本文提出了一种基于先验水平集方法和深度卷积神经网络相结合的甲状腺滤泡性肿瘤分割和分类方法。该方法旨在对超声图像中的甲状腺滤泡性腺瘤(TFA)和滤泡状甲状腺癌(FTC)进行区分。这两种肿瘤在外观上形状、大小和对比度相似,因此即使是超声专家也很难区分它们。由于甲状腺超声图像的背景复杂,在区分 TFA 和 FTC 之前,我们需要对每位患者的整个图像中的病变进行分割。分割的主要挑战是图像通常具有较弱的边缘和不均匀的区域。分类的主要问题是准确性取决于从分割结果中提取的特征。为了解决这些问题,我们通过级联学习架构来执行这两个任务,即分割和分类。对于分割,为了获得更准确的结果,我们利用 Res-U-net 框架和基于先验的水平集方法来增强它们各自的能力。然后,通过共享分割网络的浅层来训练分类网络。在真实患者数据上测试所提出的方法表明,它能够以 92.65%的 Dice 分数分割甲状腺超声图像中的病变区域,并以 96.00%的分类准确率区分 TFA 和 FTC。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验