Suppr超能文献

使用超声图像计算机辅助诊断系统改善滤泡性甲状腺癌的诊断。

Improve follicular thyroid carcinoma diagnosis using computer aided diagnosis system on ultrasound images.

作者信息

Zheng Huan, Xiao Zebin, Luo Siwei, Wu Suqing, Huang Chuxin, Hong Tingting, He Yan, Guo Yanhui, Du Guoqing

机构信息

Department of Ultrasound, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China.

Department of Pathology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China.

出版信息

Front Oncol. 2022 Nov 16;12:939418. doi: 10.3389/fonc.2022.939418. eCollection 2022.

Abstract

OBJECTIVE

We aim to leverage deep learning to develop a computer aided diagnosis (CAD) system toward helping radiologists in the diagnosis of follicular thyroid carcinoma (FTC) on thyroid ultrasonography.

METHODS

A dataset of 1159 images, consisting of 351 images from 138 FTC patients and 808 images from 274 benign follicular-pattern nodule patients, was divided into a balanced and unbalanced dataset, and used to train and test the CAD system based on a transfer learning of a residual network. Six radiologists participated in the experiments to verify whether and how much the proposed CAD system helps to improve their performance.

RESULTS

On the balanced dataset, the CAD system achieved 0.892 of area under the ROC (AUC). The accuracy, recall, precision, and F1-score of the CAD method were 84.66%, 84.66%, 84.77%, 84.65%, while those of the junior and senior radiologists were 56.82%, 56.82%, 56.95%, 56.62% and 64.20%, 64.20%, 64.35%, 64.11% respectively. With the help of CAD, the metrics of the junior and senior radiologists improved to 62.81%, 62.81%, 62.85%, 62.79% and 73.86%, 73.86%, 74.00%, 73.83%. The results almost repeated on the unbalanced dataset. The results show the proposed CAD approach can not only achieve better performance than radiologists, but also significantly improve the radiologists' diagnosis of FTC.

CONCLUSIONS

The performances of the CAD system indicate it is a reliable reference for preoperative diagnosis of FTC, and might assist the development of a fast, accessible screening method for FTC.

摘要

目的

我们旨在利用深度学习开发一种计算机辅助诊断(CAD)系统,以帮助放射科医生在甲状腺超声检查中诊断滤泡状甲状腺癌(FTC)。

方法

一个包含1159张图像的数据集,由138例FTC患者的351张图像和274例良性滤泡样结节患者的808张图像组成,被分为平衡数据集和不平衡数据集,并用于基于残差网络的迁移学习来训练和测试CAD系统。六位放射科医生参与了实验,以验证所提出的CAD系统是否以及在多大程度上有助于提高他们的诊断性能。

结果

在平衡数据集上,CAD系统的ROC曲线下面积(AUC)达到0.892。CAD方法的准确率、召回率、精确率和F1分数分别为84.66%、84.66%、84.77%、84.65%,而初级和高级放射科医生的相应指标分别为56.82%、56.82%、56.95%、56.62%和64.20%、64.20%、64.35%、64.11%。在CAD的帮助下,初级和高级放射科医生的指标分别提高到62.81%、62.81%、62.85%、62.79%和73.86%、73.86%、74.00%、73.83%。在不平衡数据集上结果几乎相同。结果表明,所提出的CAD方法不仅能取得比放射科医生更好的性能,还能显著提高放射科医生对FTC的诊断能力。

结论

CAD系统的性能表明它是FTC术前诊断的可靠参考,可能有助于开发一种快速、便捷的FTC筛查方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5a53/9709400/e2f6b8a1a836/fonc-12-939418-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验