Suppr超能文献

用于超声筛查诊断卵巢肿块的深度学习流程的开发与验证:一项回顾性多中心研究

Development and validation of a deep learning pipeline to diagnose ovarian masses using ultrasound screening: a retrospective multicenter study.

作者信息

Dai Wen-Li, Wu Ying-Nan, Ling Ya-Ting, Zhao Jing, Zhang Shuang, Gu Zhao-Wen, Gong Li-Ping, Zhu Man-Ning, Dong Shuang, Xu Song-Cheng, Wu Lei, Sun Li-Tao, Kong De-Xing

机构信息

School of Mathematical Sciences, Zhejiang University, Zijingang Campus, Hangzhou, Zhejiang, China.

Cancer Center, Department of Ultrasound Medicine, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China.

出版信息

EClinicalMedicine. 2024 Nov 19;78:102923. doi: 10.1016/j.eclinm.2024.102923. eCollection 2024 Dec.

Abstract

BACKGROUND

Ovarian cancer has the highest mortality rate among gynaecological malignancies and is initially screened using ultrasound. Owing to the high complexity of ultrasound images of ovarian masses and the anatomical characteristics of the deep pelvic cavity, subjective assessment requires extensive experience and skill. Therefore, detecting the ovaries and ovarian masses and diagnose ovarian cancer are challenging. In the present study, we aimed to develop an automated deep learning framework, the Ovarian Multi-Task Attention Network (OvaMTA), for ovary and ovarian mass detection, segmentation, and classification, as well as further diagnosis of ovarian masses based on ultrasound screening.

METHODS

Between June 2020 and May 2022, the OvaMTA model was trained, validated and tested on a training and validation cohort including 6938 images and an internal testing cohort including 1584 images which were recruited from 21 hospitals involving women who underwent ultrasound examinations for ovarian masses. Subsequently, we recruited two external test cohorts from another two hospitals. We obtained 1896 images between February 2024 and April 2024 as image-based external test dataset, and further obtained 159 videos for the video-based external test dataset between April 2024 and May 2024. We developed an artificial intelligence (AI) system (termed OvaMTA) to diagnose ovarian masses using ultrasound screening. It includes two models: an entire image-based segmentation model, OvaMTA-Seg, for ovary detection and a diagnosis model, OvaMTA-Diagnosis, for predicting the pathological type of ovarian mass using image patches cropped by OvaMTA-Seg. The performance of the system was evaluated in one internal and two external validation cohorts, and compared with doctors' assessments in real-world testing. We recruited eight physicians to assess the real-world data. The value of the system in assisting doctors with diagnosis was also evaluated.

FINDINGS

In terms of segmentation, OvaMTA-Seg achieved an average Dice score of 0.887 on the internal test set and 0.819 on the image-based external test set. OvaMTA-Seg also performed well in ovarian mass detection from test images, including healthy ovaries and masses (internal test area under the curve [AUC]: 0.970; external test AUC: 0.877). In terms of classification diagnosis prediction, OvaMTA-Diagnosis demonstrated high performance on image-based internal (AUC: 0.941) and external test sets (AUC: 0.941). In video-based external testing, OvaMTA recognised 159 videos with ovarian masses with AUC of 0.911, and is comparable to the performance of senior radiologists (ACC: 86.2 vs. 88.1,  = 0.50; SEN: 81.8 vs. 88.6,  = 0.16; SPE: 89.2 vs. 87.6,  = 0.68). There was a significant improvement in junior and intermediate radiologists who were assisted by AI compared to those who were not assisted by AI (ACC: 80.8 vs. 75.3,  = 0.00015; SEN: 79.5 vs. 74.6,  = 0.029; SPE: 81.7 vs. 75.8,  = 0.0032). General practitioners assisted by AI achieved an average performance of radiologists (ACC: 82.7 vs. 81.8,  = 0.80; SEN: 84.8 vs. 82.6,  = 0.72; SPE: 81.2 vs. 81.2,  > 0.99).

INTERPRETATION

The OvaMTA system based on ultrasound imaging is a simple and practical auxiliary tool for screening for ovarian cancer, with a diagnostic performance comparable to that of senior radiologists. This provides a potential tool for screening ovarian cancer.

FUNDING

This work was supported by the National Natural Science Foundation of China (Grant Nos. 12090020, 82071929, and 12090025) and the R&D project of the Pazhou Lab (Huangpu) (Grant No. 2023K0605).

摘要

背景

卵巢癌在妇科恶性肿瘤中死亡率最高,最初通过超声进行筛查。由于卵巢肿块超声图像的高度复杂性以及盆腔深部的解剖特征,主观评估需要丰富的经验和技巧。因此,检测卵巢和卵巢肿块以及诊断卵巢癌具有挑战性。在本研究中,我们旨在开发一种自动化深度学习框架,即卵巢多任务注意力网络(OvaMTA),用于卵巢和卵巢肿块的检测、分割和分类,以及基于超声筛查对卵巢肿块进行进一步诊断。

方法

2020年6月至2022年5月期间,OvaMTA模型在一个包含6938张图像的训练和验证队列以及一个包含1584张图像的内部测试队列上进行训练、验证和测试,这些图像来自21家医院,涉及接受卵巢肿块超声检查的女性。随后,我们从另外两家医院招募了两个外部测试队列。我们在2024年2月至2024年4月期间获得了1896张图像作为基于图像的外部测试数据集,并在2024年4月至2024年5月期间进一步获得了159个视频作为基于视频的外部测试数据集。我们开发了一种人工智能(AI)系统(称为OvaMTA),用于通过超声筛查诊断卵巢肿块。它包括两个模型:一个基于全图像的分割模型OvaMTA-Seg,用于卵巢检测;一个诊断模型OvaMTA-Diagnosis,用于使用OvaMTA-Seg裁剪的图像块预测卵巢肿块的病理类型。该系统的性能在一个内部验证队列和两个外部验证队列中进行评估,并在实际测试中与医生的评估进行比较。我们招募了八位医生来评估实际数据。还评估了该系统在协助医生诊断方面的价值。

结果

在分割方面,OvaMTA-Seg在内部测试集上的平均Dice分数为0.887,在基于图像的外部测试集上为0.819。OvaMTA-Seg在从测试图像中检测卵巢肿块(包括健康卵巢和肿块)方面也表现出色(内部测试曲线下面积[AUC]:0.970;外部测试AUC:0.877)。在分类诊断预测方面,OvaMTA-Diagnosis在基于图像的内部(AUC:0.941)和外部测试集(AUC:0.941)上表现出高性能。在基于视频的外部测试中,OvaMTA识别出159个有卵巢肿块的视频,AUC为0.911,与高级放射科医生的表现相当(准确率[ACC]:86.2对88.1,P = 0.50;灵敏度[SEN]:81.8对88.6,P = 0.16;特异度[SPE]:89.2对87.6,P = 0.68)。与未得到AI协助的初级和中级放射科医生相比,得到AI协助的医生有显著改善(ACC:80.8对75.3,P = 0.00015;SEN:79.5对74.6,P = 0.029;SPE:81.7对75.8,P = 0.0032)。得到AI协助的全科医生达到了放射科医生的平均表现(ACC:82.7对81.8,P = 0.80;SEN:84.8对82.6,P = 0.72;SPE:81.2对81.2,P > 0.99)。

解读

基于超声成像的OvaMTA系统是一种简单实用的卵巢癌筛查辅助工具,其诊断性能与高级放射科医生相当。这为卵巢癌筛查提供了一种潜在工具。

资金

本研究得到了中国国家自然科学基金(项目编号:12090020、8又2071929和12090025)以及广州实验室(黄埔)研发项目(项目编号:2023K0605)的支持。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8323/11617315/ab9f6d81a097/gr1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验