Suppr超能文献

利用有限信息在急诊科分诊时识别重症患者的深度学习方法。

Deep-learning approaches to identify critically Ill patients at emergency department triage using limited information.

作者信息

Joseph Joshua W, Leventhal Evan L, Grossestreuer Anne V, Wong Matthew L, Joseph Loren J, Nathanson Larry A, Donnino Michael W, Elhadad Noémie, Sanchez Leon D

机构信息

Department of Emergency Medicine Beth Israel Deaconess Medical Center Boston Massachusetts USA.

Harvard Medical School Boston Massachusetts USA.

出版信息

J Am Coll Emerg Physicians Open. 2020 Sep 1;1(5):773-781. doi: 10.1002/emp2.12218. eCollection 2020 Oct.

Abstract

STUDY OBJECTIVE

Triage quickly identifies critically ill patients, facilitating timely interventions. Many emergency departments (EDs) use emergency severity index (ESI) or abnormal vital sign triggers to guide triage. However, both use fixed thresholds, and false activations are costly. Prior approaches using machinelearning have relied on information that is often unavailable during the triage process. We examined whether deep-learning approaches could identify critically ill patients only using data immediately available at triage.

METHODS

We conducted a retrospective, cross-sectional study at an urban tertiary care center, from January 1, 2012-January 1, 2020. De-identified triage information included structured (age, sex, initial vital signs) and textual (chief complaint) data, with critical illness (mortality or ICU admission within 24 hours) as the outcome. Four progressively complex deep-learning models were trained and applied to triage information from all patients. We compared the accuracy of the models against ESI as the standard diagnostic test, using area under the receiver-operator curve (AUC).

RESULTS

A total of 445,925 patients were included, with 60,901 (13.7%) critically ill. Vital sign thresholds identified critically ill patients with AUC 0.521 (95% confidence interval [CI] = 0.519-0.522), and ESI <3 demonstrated AUC 0.672 (95% CI = 0.671-0.674), logistic regression classified patients with AUC 0.803 (95% CI = 0.802-0.804), 2-layer neural network with structured data with AUC 0.811 (95% CI = 0.807-0.815), gradient tree boosting with AUC 0.820 (95% CI = 0.818-0.821), and the neural network model with textual data with AUC 0.851 (95% CI = 0.849-0.852). All successive increases in AUC were statistically significant.

CONCLUSION

Deep-learning techniques represent a promising method of augmenting triage, even with limited information. Further research is needed to determine if improved predictions yield clinical and operational benefits.

摘要

研究目的

分诊可快速识别重症患者,便于及时进行干预。许多急诊科使用急诊严重程度指数(ESI)或异常生命体征触发指标来指导分诊。然而,两者均使用固定阈值,且误激活成本高昂。以往使用机器学习的方法依赖于分诊过程中通常无法获取的信息。我们研究了深度学习方法是否仅使用分诊时即时可得的数据就能识别重症患者。

方法

我们于2012年1月1日至2020年1月1日在一家城市三级医疗中心进行了一项回顾性横断面研究。去识别化的分诊信息包括结构化数据(年龄、性别、初始生命体征)和文本数据(主诉),以重症(24小时内死亡或入住重症监护病房)作为结局。训练了四个复杂度逐渐增加的深度学习模型,并将其应用于所有患者的分诊信息。我们将模型的准确性与作为标准诊断测试的ESI进行比较,使用受试者工作特征曲线下面积(AUC)。

结果

共纳入445,925例患者,其中60,901例(13.7%)为重症患者。生命体征阈值识别重症患者的AUC为0.521(95%置信区间[CI]=0.519 - 0.522),ESI<3的AUC为0.672(95%CI = 0.671 - 0.674),逻辑回归对患者分类的AUC为0.803(95%CI = 0.802 - 0.804),具有结构化数据的两层神经网络的AUC为0.811(95%CI =

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验