Suppr超能文献

利用机器学习在急诊科分诊时创建用于脓毒症临床决策支持的自动触发机制。

Creating an automated trigger for sepsis clinical decision support at emergency department triage using machine learning.

作者信息

Horng Steven, Sontag David A, Halpern Yoni, Jernite Yacine, Shapiro Nathan I, Nathanson Larry A

机构信息

Department of Emergency Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, United States of America.

Department of Electrical Engineering and Computer Science, Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America.

出版信息

PLoS One. 2017 Apr 6;12(4):e0174708. doi: 10.1371/journal.pone.0174708. eCollection 2017.

Abstract

OBJECTIVE

To demonstrate the incremental benefit of using free text data in addition to vital sign and demographic data to identify patients with suspected infection in the emergency department.

METHODS

This was a retrospective, observational cohort study performed at a tertiary academic teaching hospital. All consecutive ED patient visits between 12/17/08 and 2/17/13 were included. No patients were excluded. The primary outcome measure was infection diagnosed in the emergency department defined as a patient having an infection related ED ICD-9-CM discharge diagnosis. Patients were randomly allocated to train (64%), validate (20%), and test (16%) data sets. After preprocessing the free text using bigram and negation detection, we built four models to predict infection, incrementally adding vital signs, chief complaint, and free text nursing assessment. We used two different methods to represent free text: a bag of words model and a topic model. We then used a support vector machine to build the prediction model. We calculated the area under the receiver operating characteristic curve to compare the discriminatory power of each model.

RESULTS

A total of 230,936 patient visits were included in the study. Approximately 14% of patients had the primary outcome of diagnosed infection. The area under the ROC curve (AUC) for the vitals model, which used only vital signs and demographic data, was 0.67 for the training data set, 0.67 for the validation data set, and 0.67 (95% CI 0.65-0.69) for the test data set. The AUC for the chief complaint model which also included demographic and vital sign data was 0.84 for the training data set, 0.83 for the validation data set, and 0.83 (95% CI 0.81-0.84) for the test data set. The best performing methods made use of all of the free text. In particular, the AUC for the bag-of-words model was 0.89 for training data set, 0.86 for the validation data set, and 0.86 (95% CI 0.85-0.87) for the test data set. The AUC for the topic model was 0.86 for the training data set, 0.86 for the validation data set, and 0.85 (95% CI 0.84-0.86) for the test data set.

CONCLUSION

Compared to previous work that only used structured data such as vital signs and demographic information, utilizing free text drastically improves the discriminatory ability (increase in AUC from 0.67 to 0.86) of identifying infection.

摘要

目的

证明除生命体征和人口统计学数据外,使用自由文本数据对急诊科疑似感染患者进行识别的增量效益。

方法

这是一项在三级学术教学医院进行的回顾性观察队列研究。纳入了2008年12月17日至2013年2月17日期间急诊科所有连续就诊的患者。无患者被排除。主要结局指标是在急诊科诊断的感染,定义为患者具有与感染相关的急诊科ICD-9-CM出院诊断。患者被随机分配到训练(64%)、验证(20%)和测试(16%)数据集。在使用双词搭配和否定检测对自由文本进行预处理后,我们构建了四个模型来预测感染,逐步添加生命体征、主诉和自由文本护理评估。我们使用两种不同的方法来表示自由文本:词袋模型和主题模型。然后我们使用支持向量机构建预测模型。我们计算了受试者工作特征曲线下的面积以比较每个模型的辨别力。

结果

该研究共纳入230,936次患者就诊。约14%的患者有诊断感染的主要结局。仅使用生命体征和人口统计学数据的生命体征模型在训练数据集上的ROC曲线下面积(AUC)为0.67,在验证数据集上为0.67,在测试数据集上为0.67(95%CI 0.65 - 0.69)。还包括人口统计学和生命体征数据的主诉模型在训练数据集上的AUC为0.84,在验证数据集上为0.83,在测试数据集上为0.83(95%CI 0.81 - 0.84)。表现最佳的方法使用了所有自由文本。特别是,词袋模型在训练数据集上的AUC为0.89,在验证数据集上为0.86,在测试数据集上为0.86(95%CI 0.85 - 0.87)。主题模型在训练数据集上的AUC为0.86,在验证数据集上为0.86,在测试数据集上为0.85(95%CI 0.84 - 0.86)。

结论

与之前仅使用生命体征和人口统计学信息等结构化数据的研究相比,利用自由文本极大地提高了识别感染的辨别能力(AUC从0.67增加到0.86)。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bd56/5383046/1bdc556b81ee/pone.0174708.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验