Suppr超能文献

用于 CW-EPR 光谱批拟合和 χ 聚类分析的全局最小化工具包。

A Global Minimization Toolkit for Batch-Fitting and χ Cluster Analysis of CW-EPR Spectra.

机构信息

Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts.

Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts.

出版信息

Biophys J. 2020 Nov 17;119(10):1937-1945. doi: 10.1016/j.bpj.2020.08.042. Epub 2020 Oct 14.

Abstract

Electron paramagnetic resonance spectroscopy (EPR) is a uniquely powerful technique for characterizing conformational dynamics at specific sites within a broad range of molecular species in water. Computational tools for fitting EPR spectra have enabled dynamics parameters to be determined quantitatively. These tools have dramatically broadened the capabilities of EPR dynamics analysis, however, their implementation can easily lead to overfitting or problems with self-consistency. As a result, dynamics parameters and associated properties become difficult to reliably determine, particularly in the slow-motion regime. Here, we present an EPR analysis strategy and the corresponding computational tool for batch-fitting EPR spectra and cluster analysis of the χ landscape in Linux. We call this tool CSCA (Chi-Squared Cluster Analysis). The CSCA tool allows us to determine self-consistent rotational diffusion rates and enables calculations of activation energies of diffusion from Arrhenius plots. We demonstrate CSCA using a model system designed for EPR analysis: a self-assembled nanoribbon with radical electron spin labels positioned at known distances off the surface. We anticipate that the CSCA tool will increase the reproducibility of EPR fitting for the characterization of dynamics in biomolecules and soft matter.

摘要

电子顺磁共振波谱(EPR)是一种独特的强大技术,可用于在水中的广泛分子种类的特定位置上表征构象动力学。用于拟合 EPR 谱的计算工具使动力学参数能够定量确定。这些工具极大地扩展了 EPR 动力学分析的能力,但是,它们的实现可能很容易导致过度拟合或自洽性问题。结果,动力学参数和相关特性变得难以可靠地确定,尤其是在慢动作状态下。在这里,我们提出了一种在 Linux 中用于批量拟合 EPR 谱和 χ 景观聚类分析的 EPR 分析策略和相应的计算工具。我们称这个工具为 CSCA(卡方聚类分析)。CSCA 工具使我们能够确定自洽的旋转扩散率,并能够从 Arrhenius 图计算扩散的活化能。我们使用专为 EPR 分析设计的模型系统来演示 CSCA:一个自组装的纳米带,其自由基电子自旋标记位于距表面已知距离处。我们预计 CSCA 工具将提高生物分子和软物质中动力学特性的 EPR 拟合的可重复性。

相似文献

1
A Global Minimization Toolkit for Batch-Fitting and χ Cluster Analysis of CW-EPR Spectra.
Biophys J. 2020 Nov 17;119(10):1937-1945. doi: 10.1016/j.bpj.2020.08.042. Epub 2020 Oct 14.
4
Nitroxide spin labels and EPR spectroscopy: A powerful association for protein dynamics studies.
Biochim Biophys Acta Proteins Proteom. 2021 Jul;1869(7):140653. doi: 10.1016/j.bbapap.2021.140653. Epub 2021 Mar 20.
5
CW-EPR Spectral Simulations: Slow-Motion Regime.
Methods Enzymol. 2015;563:143-70. doi: 10.1016/bs.mie.2015.05.024. Epub 2015 Jun 23.
6
Integrating Electron Paramagnetic Resonance Spectroscopy and Computational Modeling to Measure Protein Structure and Dynamics.
Chempluschem. 2024 Jan;89(1):e202300506. doi: 10.1002/cplu.202300506. Epub 2023 Oct 25.
8
Prediction of nitroxide spin label EPR spectra from MD trajectories: application to myoglobin.
Faraday Discuss. 2011;148:283-98; discussion 299-314. doi: 10.1039/c004855k.
9
Domain-Specific Phase Transitions in a Supramolecular Nanostructure.
J Am Chem Soc. 2022 Oct 5;144(39):17841-17847. doi: 10.1021/jacs.2c05908. Epub 2022 Sep 20.
10
Elucidating the design principles of photosynthetic electron-transfer proteins by site-directed spin labeling EPR spectroscopy.
Biochim Biophys Acta. 2016 May;1857(5):548-556. doi: 10.1016/j.bbabio.2015.08.009. Epub 2015 Sep 1.

引用本文的文献

本文引用的文献

1
Conformational Dynamics in Extended RGD-Containing Peptides.
Biomacromolecules. 2020 Jul 13;21(7):2786-2794. doi: 10.1021/acs.biomac.0c00506. Epub 2020 Jun 16.
2
Quantifying residue-specific conformational dynamics of a highly reactive 29-mer peptide.
Sci Rep. 2020 Feb 13;10(1):2597. doi: 10.1038/s41598-020-59047-7.
3
Water Dynamics from the Surface to the Interior of a Supramolecular Nanostructure.
J Am Chem Soc. 2017 Jul 5;139(26):8915-8921. doi: 10.1021/jacs.7b02969. Epub 2017 Jun 21.
4
A fully automated flow-based approach for accelerated peptide synthesis.
Nat Chem Biol. 2017 May;13(5):464-466. doi: 10.1038/nchembio.2318. Epub 2017 Feb 28.
5
A New Wavelet Denoising Method for Selecting Decomposition Levels and Noise Thresholds.
IEEE Access. 2016;4:3862-3877. doi: 10.1109/ACCESS.2016.2587581. Epub 2016 Jul 7.
6
How to Distinguish Conformational Selection and Induced Fit Based on Chemical Relaxation Rates.
PLoS Comput Biol. 2016 Sep 16;12(9):e1005067. doi: 10.1371/journal.pcbi.1005067. eCollection 2016 Sep.
7
Modulation of Folding Internal Friction by Local and Global Barrier Heights.
J Phys Chem Lett. 2016 Mar 17;7(6):1028-34. doi: 10.1021/acs.jpclett.6b00329. Epub 2016 Mar 7.
8
Interface Immobilization Chemistry of RGD-based Peptides Regulates Integrin Mediated Cell Adhesion.
Adv Funct Mater. 2014 Feb;24(7):943-956. doi: 10.1002/adfm.201302411. Epub 2013 Oct 16.
9
Molecular origins of internal friction effects on protein-folding rates.
Nat Commun. 2014 Jul 2;5:4307. doi: 10.1038/ncomms5307.
10
Internal dynamics of a supramolecular nanofibre.
Nat Mater. 2014 Aug;13(8):812-6. doi: 10.1038/nmat3979. Epub 2014 May 25.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验