Biomaterials in Medicinal Chemistry Laboratory, Department of Natural Products Chemistry, School of Chemistry, Madurai Kamaraj University, Madurai 625021, India.
Department of Orthopaedics, The Affiliated Hospital of Northwest University, Xi'an No.3 Hospital, Xi'an 710018, Mainland China.
Int J Nanomedicine. 2020 Oct 27;15:8261-8279. doi: 10.2147/IJN.S267632. eCollection 2020.
To develop the surface-treated metal implant with highly encouraged positive properties, including high anti-corrosiveness, bio-activeness and bio-compatibleness for orthopedic applications.
In this work, the surface of commercially pure titanium (Ti) metal was treated with bio-compatible polydopamine (PD) by merely immersing the Ti plate in PD solution. The composite of trivalent lanthanide minerals (La, Ce and Gd)-substituted hydroxyapatite (MHAP) with (AV) gel was prepared and coated on the PD-Ti plate by electrophoretic deposition (EPD) method. The choice of trivalent lanthanide ions is based on their bio-compatible nature and bone-seeking properties. The formation of the PD layer, composites, and composite coatings on Ti plate and PD-Ti surface was confirmed by FT-IR, XRD, SEM and HR-TEM observations. In-vitro assessments such as osteoblasts like MG-63 cell viability, alkaline phosphatase activity and mineralization ability of the MHAP/AV composite were tested, and the composite-coated plate was implanted into a rat bone defect model for in-vivo bone regeneration studies.
The coating ability of the MHAP/AV composite was highly preferred to PD-treated Ti plate than an untreated Ti plate due to the metal absorption ability of PD. This was confirmed by SEM analysis. The in-vitro and in-vivo studies show the better osteogenic ability of MHAP/AV composite at 14 day and 4 week of an experimental period, respectively.
The osteoblast ability of the fabricated device without producing any adverse effect in the rat model recommends that the fabricated device would serve as a better platform on the hard tissue regeneration for load-bearing applications of orthopedics.
开发具有高度鼓励的积极特性的表面处理金属植入物,包括高耐腐蚀性、生物活性和生物相容性,用于骨科应用。
在这项工作中,通过将 Ti 板仅浸入 PD 溶液中,用生物相容的聚多巴胺 (PD) 处理商业纯钛 (Ti) 金属的表面。用 AV 凝胶制备三价镧系矿物 (La、Ce 和 Gd) 取代的羟基磷灰石 (MHAP) 的复合材料,并通过电泳沉积 (EPD) 方法涂覆在 PD-Ti 板上。选择三价镧系离子是基于它们的生物相容性和骨靶向特性。通过 FT-IR、XRD、SEM 和 HR-TEM 观察证实了 PD 层、复合材料以及 Ti 板和 PD-Ti 表面上的复合涂层的形成。对 MHAP/AV 复合材料的成骨细胞样 MG-63 细胞活力、碱性磷酸酶活性和矿化能力进行了体外评估,并将复合涂层板植入大鼠骨缺损模型进行体内骨再生研究。
与未处理的 Ti 板相比,MHAP/AV 复合材料的涂层能力更倾向于 PD 处理的 Ti 板,因为 PD 具有金属吸收能力。这通过 SEM 分析得到证实。体外和体内研究表明,在实验期的 14 天和 4 周时,MHAP/AV 复合材料分别具有更好的成骨能力。
在大鼠模型中没有产生任何不良反应的情况下,所制备的装置具有成骨细胞能力,这表明该装置将成为用于骨科承重应用的硬组织再生的更好平台。