Suppr超能文献

在临床实践中使用一种可以通过诊断人工智能系统得出的自动糖尿病视网膜病变筛查方法。

Use in clinical practice of an automated screening method of diabetic retinopathy that can be derived using a diagnostic artificial intelligence system.

机构信息

FISABIO Oftalmología Médica (FOM), Valencia, España; Universidad de Valencia, Valencia, España.

FISABIO Oftalmología Médica (FOM), Valencia, España; Universidad de Valencia, Valencia, España; IDx Technologies Inc., Coralville, United Sates of America; European Innovative Biomedicine Institute (EIBI), Castro-urdiales, España; Instituto de la retina, Valencia, España; Universidad Cardenal Herrera CEU, Valencia, España; Oftalvist, Valencia, España; Departamento de Oftalmología, VUmc, Centros Médicos de la Universidad de Ámsterdam, Ámsterdam, Países Bajos; Departamento de Medicina General y Geriátrica, Centro Médico de la Universidad VU, Ámsterdam, Países Bajos; Instituto de Investigación en Salud Pública de Ámsterdam, Centro Médico de la Universidad VU, Ámsterdam, Países Bajos.

出版信息

Arch Soc Esp Oftalmol (Engl Ed). 2021 Mar;96(3):117-126. doi: 10.1016/j.oftal.2020.08.007. Epub 2020 Nov 3.

Abstract

BACKGROUND AND OBJECTIVE

To compare the diagnostic performance of an autonomous diagnostic artificial intelligence (AI) system for the diagnosis of derivable diabetic retinopathy (RDR) with manual classification.

MATERIALS AND METHODS

Patients with type 1 and type 2 diabetes participated in a diabetic retinopathy (DR) screening program between 2011-2012. 2 images of each eye were collected. Unidentifiable retinal images were obtained, one centered on the disc and one on the fovea. The exams were classified with the autonomous AI system and manually by anonymous ophthalmologists. The results of the AI system and manual classification were compared in terms of sensitivity and specificity for the diagnosis of both (RDR) and diabetic retinopathy with decreased vision (VTDR).

RESULTS

10,257 retinal inages of 5,630 eyes of 2,680 subjects were included. According to the manual classification, the prevalence of RDR was 4.14% and that of VTDR 2.57%. The AI system recorded 100% (95% CI: 97-100%) sensitivity and 81.82% (95% CI: 80 -83%) specificity for RDR, and 100% (95% CI: 95-100%) of sensitivity and 94.64% (95% CI: 94-95%) of specificity for VTDR.

CONCLUSIONS

Compared to the manual classification, the autonomous diagnostic AI system registered a high sensitivity (100%) and specificity (82%) in the diagnosis of RDR and macular edema in people with diabetes. Due to its immediate diagnosis, the autonomous diagnostic AI system can increase the accessibility of RDR screening in primary care settings.

摘要

背景与目的

比较自主诊断人工智能(AI)系统对可检测糖尿病性视网膜病变(RDR)的诊断性能与手动分类。

材料与方法

1 型和 2 型糖尿病患者参加了 2011-2012 年的糖尿病视网膜病变(DR)筛查计划。每只眼采集 2 张图像。获得无法识别的视网膜图像,一个位于视盘中心,一个位于黄斑中心。使用自主 AI 系统和匿名眼科医生对这些检查进行分类。比较 AI 系统和手动分类在诊断 RDR 和视力下降的糖尿病性视网膜病变(VTDR)方面的敏感性和特异性。

结果

纳入了 2680 名受试者的 5630 只眼中的 10257 张视网膜图像。根据手动分类,RDR 的患病率为 4.14%,VTDR 的患病率为 2.57%。AI 系统记录的 RDR 敏感性为 100%(95%CI:97-100%),特异性为 81.82%(95%CI:80-83%),VTDR 的敏感性为 100%(95%CI:95-100%),特异性为 94.64%(95%CI:94-95%)。

结论

与手动分类相比,自主诊断 AI 系统在诊断糖尿病患者的 RDR 和黄斑水肿方面具有较高的敏感性(100%)和特异性(82%)。由于其即时诊断,自主诊断 AI 系统可以增加初级保健环境中 RDR 筛查的可及性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验