Suppr超能文献

利用热力学自由能模拟揭示 Pinholin S68 激活的热力学细节

Thermodynamic Details of Pinholin S68 Activation Revealed Using Alchemical Free Energy Simulations.

机构信息

Department of Chemical Engineering, University of Louisville, Louisville, Kentucky 40292, United States.

Department of Chemistry and Biochemistry, Miami University, Oxford, Ohio 45056, United States.

出版信息

J Phys Chem B. 2024 Sep 12;128(36):8762-8770. doi: 10.1021/acs.jpcb.4c03302. Epub 2024 Aug 28.

Abstract

Pinholin S68 is a viral integral membrane protein whose function is to form nanoscopic "pinholes" in bacterial cell membranes to induce cell lysis as part of the viral replication cycle. Pinholin can transition from an inactive to an active conformation by exposing a transmembrane domain (TMD1) to the extracellular fluid. Upon activation, several copies of the protein assemble via interactions among a second transmembrane domain (TMD2) to form a single pore, thus hastening cell lysis and viral escape. The following experiments provide conformational descriptors of pinholin in active and inactive states and elucidate the molecular driving forces that control pinholin activity. In the present study, molecular dynamics (MD) simulations have been used to refine experimentally derived conformational descriptors into an atomistically detailed model of irsS68, an antiholin mutant. To provide additional details about the thermodynamics of pinholin activation and to overcome large intrinsic kinetic barriers to activation, alchemical free energy simulations have been conducted. Alchemical mutations reveal the change in folding free energy upon mutation. The results suggest that alchemical mutations are an effective tool to rationalize experimental observations and predict the effects of site mutations on conformational states for proteins integrated into lipid bilayers. S16F, A17Q, A17Q+G21Q, and A17Q+G21Q+G14Q mutants reveal how changes in hydrophilicity and disruption of the glycine zipper motif influence pinholin's thermodynamic equilibrium, favoring the active conformation. These findings align with experimental observations from DEER spectroscopy, demonstrating that mutations increasing the hydrophilicity of TMD1 promote activation by making TMD1 more likely to exit the membrane and enter the extracellular fluid.

摘要

Pinholin S68 是一种病毒整合膜蛋白,其功能是在细菌细胞膜上形成纳米级“小孔”,导致细胞裂解,这是病毒复制周期的一部分。Pinholin 可以通过暴露跨膜结构域(TMD1)到细胞外液来从非活性构象转变为活性构象。在激活后,几个蛋白质拷贝通过第二跨膜结构域(TMD2)之间的相互作用组装在一起,形成单个孔,从而加速细胞裂解和病毒逃逸。以下实验提供了活性和非活性状态下 Pinholin 的构象描述符,并阐明了控制 Pinholin 活性的分子驱动力。在本研究中,使用分子动力学(MD)模拟将实验得出的构象描述符细化为 irsS68 的原子细节模型,这是一种抗孔蛋白突变体。为了提供有关 Pinholin 激活热力学的更多详细信息并克服激活的内在动力学障碍,进行了自由能模拟。自由能模拟揭示了突变时折叠自由能的变化。结果表明,自由能模拟是合理化实验观察结果和预测整合到脂质双层中的蛋白质的构象状态的突变效应的有效工具。S16F、A17Q、A17Q+G21Q 和 A17Q+G21Q+G14Q 突变体揭示了亲水性变化和破坏甘氨酸拉链模体如何影响 Pinholin 的热力学平衡,有利于活性构象。这些发现与来自 DEER 光谱学的实验观察结果一致,表明增加 TMD1 亲水性的突变通过使 TMD1更有可能离开膜并进入细胞外液来促进激活。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验