Suppr超能文献

利用拉曼光谱评估正常和肿瘤人类脑组织的生化成分用于诊断。

Use of Raman spectroscopy to evaluate the biochemical composition of normal and tumoral human brain tissues for diagnosis.

机构信息

Center for Innovation, Technology and Education - CITÉ, Universidade Anhembi Morumbi - UAM, Parque Tecnológico de São Jose dos Campos, Estr. Dr. Altino Bondensan, 500, São José dos Campos, SP, 12247-106, Brazil.

Hospital São José, Santa Casa de Misericórdia de Ilhéus, Ladeira da Vitória, 113, Ilhéus, BA, 45653-420, Brazil.

出版信息

Lasers Med Sci. 2022 Feb;37(1):121-133. doi: 10.1007/s10103-020-03173-1. Epub 2020 Nov 6.

Abstract

Raman spectroscopy was used to identify biochemical differences in normal brain tissue (cerebellum and meninges) compared to tumors (glioblastoma, medulloblastoma, schwannoma, and meningioma) through biochemical information obtained from the samples. A total of 263 spectra were obtained from fragments of the normal cerebellum (65), normal meninges (69), glioblastoma (28), schwannoma (8), medulloblastoma (19), and meningioma (74), which were collected using the dispersive Raman spectrometer (830 nm, near infrared, output power of 350 mW, 20 s exposure time to obtain the spectra), coupled to a Raman probe. A spectral model based on least squares fitting was developed to estimate the biochemical concentration of 16 biochemical compounds present in brain tissue, among those that most characterized brain tissue spectra, such as linolenic acid, triolein, cholesterol, sphingomyelin, phosphatidylcholine, β-carotene, collagen, phenylalanine, DNA, glucose, and blood. From the biochemical information, the classification of the spectra in the normal and tumor groups was conducted according to the type of brain tumor and corresponding normal tissue. The classification used in discrimination models were (a) the concentrations of the biochemical constituents of the brain, through linear discriminant analysis (LDA), and (b) the tissue spectra, through the discrimination by partial least squares (PLS-DA) regression. The models obtained 93.3% discrimination accuracy through the LDA between the normal and tumor groups of the cerebellum separated according to the concentration of biochemical constituents and 94.1% in the discrimination by PLS-DA using the whole spectrum. The results obtained demonstrated that the Raman technique is a promising tool to differentiate concentrations of biochemical compounds present in brain tissues, both normal and tumor. The concentrations estimated by the biochemical model and all the information contained in the Raman spectra were both able to classify the pathological groups.

摘要

拉曼光谱用于通过从样本中获得的生化信息来识别正常脑组织(小脑和脑膜)与肿瘤(胶质母细胞瘤、髓母细胞瘤、神经鞘瘤和脑膜瘤)之间的生化差异。使用分散拉曼光谱仪(830nm,近红外,输出功率 350mW,20s 曝光时间以获取光谱)从正常小脑(65 个)、正常脑膜(69 个)、胶质母细胞瘤(28 个)、神经鞘瘤(8 个)、髓母细胞瘤(19 个)和脑膜瘤(74 个)的碎片中获得了总共 263 个光谱。该光谱仪与拉曼探头耦合。开发了一种基于最小二乘拟合的光谱模型来估计 16 种存在于脑组织中的生化化合物的生化浓度,这些化合物最能描述脑组织的光谱,例如亚麻酸、三油酸甘油酯、胆固醇、神经鞘磷脂、磷脂酰胆碱、β-胡萝卜素、胶原蛋白、苯丙氨酸、DNA、葡萄糖和血液。根据生化信息,根据脑肿瘤的类型和相应的正常组织,对正常和肿瘤组的光谱进行分类。在判别模型中使用的分类方法是:(a) 通过线性判别分析(LDA)对脑生化成分的浓度进行分类,以及 (b) 通过偏最小二乘判别分析(PLS-DA)回归对组织光谱进行分类。通过 LDA 模型对小脑的正常和肿瘤组进行分类,根据生化成分的浓度获得了 93.3%的判别准确率,而通过 PLS-DA 模型对整个光谱进行分类则获得了 94.1%的判别准确率。结果表明,拉曼技术是一种有前途的工具,可以区分正常和肿瘤脑组织中生化化合物的浓度。生化模型估计的浓度和拉曼光谱中包含的所有信息都能够对病理组进行分类。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验