Peel Tyler R, Dash Suryadeep, Lomber Stephen G, Corneil Brian D
Département de neurosciences, Université de Montréal, Montréal, QC, Canada.
The Brain and Mind Institute, University of Western Ontario, London, Ontario, Canada.
J Comput Neurosci. 2021 Aug;49(3):229-249. doi: 10.1007/s10827-020-00760-7. Epub 2020 Nov 8.
Saccades require a spatiotemporal transformation of activity between the intermediate layers of the superior colliculus (iSC) and downstream brainstem burst generator. The dynamic linear ensemble-coding model (Goossens and Van Opstal 2006) proposes that each iSC spike contributes a fixed mini-vector to saccade displacement. Although biologically-plausible, this model assumes cortical areas like the frontal eye fields (FEF) simply provide the saccadic goal to be executed by the iSC and brainstem burst generator. However, the FEF and iSC operate in unison during saccades, and a pathway from the FEF to the brainstem burst generator that bypasses the iSC exists. Here, we investigate the impact of large yet reversible inactivation of the FEF on iSC activity in the context of the model across four saccade tasks. We exploit the overlap of saccade vectors generated when the FEF is inactivated or not, comparing the number of iSC spikes for metrically-matched saccades. We found that the iSC emits fewer spikes for metrically-matched saccades during FEF inactivation. The decrease in spike count is task-dependent, with a greater decrease accompanying more cognitively-demanding saccades. Our results show that FEF integrity influences the readout of iSC activity in a task-dependent manner. We propose that the dynamic linear ensemble-coding model be modified so that FEF inactivation increases the gain of a readout parameter, effectively increasing the influence of a single iSC spike. We speculate that this modification could be instantiated by FEF and iSC pathways to the cerebellum that could modulate the excitability of the brainstem burst generator.
扫视运动需要在中脑上丘(iSC)的中间层与下游脑干爆发发生器之间进行活动的时空转换。动态线性集合编码模型(Goossens和Van Opstal,2006年)提出,每个iSC尖峰对扫视位移贡献一个固定的微型向量。尽管该模型具有生物学合理性,但它假设像额叶眼动区(FEF)这样的皮质区域只是简单地提供由iSC和脑干爆发发生器执行的扫视目标。然而,在扫视运动期间,FEF和iSC协同运作,并且存在一条从FEF到脑干爆发发生器且绕过iSC的通路。在此,我们在该模型的背景下,通过四项扫视任务研究了FEF的大面积但可逆失活对iSC活动的影响。我们利用FEF失活或不失活时产生的扫视向量的重叠,比较了在度量匹配的扫视运动中iSC尖峰的数量。我们发现,在FEF失活期间,对于度量匹配的扫视运动,iSC发出的尖峰较少。尖峰计数的减少取决于任务,在认知要求更高的扫视运动中减少得更多。我们的结果表明,FEF的完整性以任务依赖的方式影响iSC活动的读出。我们建议修改动态线性集合编码模型,使FEF失活增加读出参数的增益,有效地增加单个iSC尖峰的影响。我们推测,这种修改可能由FEF和iSC到小脑的通路实现,这些通路可以调节脑干爆发发生器的兴奋性。