Suppr超能文献

冷冻电镜揭示了铁结合肽在沉降过程中的固有无序折叠。

Folding of an Intrinsically Disordered Iron-Binding Peptide in Response to Sedimentation Revealed by Cryo-EM.

机构信息

Department of Life Sciences, Ben-Gurion University of the Negev, Beer Sheva 8410501, Israel.

The National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer Sheva 8410501, Israel.

出版信息

J Am Chem Soc. 2020 Nov 18;142(46):19551-19557. doi: 10.1021/jacs.0c07565. Epub 2020 Nov 9.

Abstract

Biomineralization is mediated by specialized proteins that guide and control mineral sedimentation. In many cases, the active regions of these biomineralization proteins are intrinsically disordered. High-resolution structures of these proteins while they interact with minerals are essential for understanding biomineralization processes and the function of intrinsically disordered proteins (IDPs). Here we used the cavity of ferritin as a nanoreactor where the interaction between M6A, an intrinsically disordered iron-binding domain, and an iron oxide particle was visualized at high resolution by cryo-EM. Taking advantage of the differences in the electron-dose sensitivity of the protein and the iron oxide particles, we developed a method to determine the irregular shape of the particles found in our density maps. We found that the folding of M6A correlates with the detection of mineral particles in its vicinity. M6A interacts with the iron oxide particles through its C-terminal side, resulting in the stabilization of a helix at its N-terminal side. The stabilization of the helix at a region that is not in direct contact with the iron oxide particle demonstrates the ability of IDPs to respond to signals from their surroundings by conformational changes. These findings provide the first glimpse toward the long-suspected mechanism for biomineralization protein control over mineral microstructure, where unstructured regions of these proteins become more ordered in response to their interaction with the nascent mineral particles.

摘要

生物矿化是由专门的蛋白质介导的,这些蛋白质可以指导和控制矿物质的沉积。在许多情况下,这些生物矿化蛋白的活性区域是固有无序的。这些蛋白质在与矿物质相互作用时的高分辨率结构对于理解生物矿化过程和无规卷曲蛋白质(IDP)的功能至关重要。在这里,我们使用铁蛋白的空腔作为纳米反应器,通过 cryo-EM 以高分辨率可视化了 M6A(一种固有无序的铁结合域)与氧化铁颗粒之间的相互作用。利用蛋白质和氧化铁颗粒对电子剂量敏感性的差异,我们开发了一种方法来确定我们密度图中发现的颗粒的不规则形状。我们发现,M6A 的折叠与其附近矿物质颗粒的检测相关。M6A 通过其 C 末端与氧化铁颗粒相互作用,导致其 N 末端的一个螺旋稳定。螺旋在不与氧化铁颗粒直接接触的区域稳定,这表明 IDP 能够通过构象变化对其周围环境的信号做出反应。这些发现为长期以来人们怀疑的生物矿化蛋白控制矿物质微观结构的机制提供了初步的认识,在这种机制中,这些蛋白质的无规卷曲区域在与新生矿物质颗粒相互作用时变得更加有序。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/efcb/7677926/3661fe1ee26e/ja0c07565_0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验