Suppr超能文献

多维部件特征增强遗传回路建模准确性。

Multidimensional Characterization of Parts Enhances Modeling Accuracy in Genetic Circuits.

机构信息

Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, California 94158, United States.

Chan-Zuckerberg Biohub, San Francisco, California 94158, United States.

出版信息

ACS Synth Biol. 2020 Nov 20;9(11):2917-2926. doi: 10.1021/acssynbio.0c00288. Epub 2020 Nov 9.

Abstract

Mathematical models can aid the design of genetic circuits, but may yield inaccurate results if individual parts are not modeled at the appropriate resolution. To illustrate the importance of this concept, we study transcriptional cascades consisting of two inducible synthetic transcription factors connected in series. Despite the simplicity of this design, we find that accurate prediction of circuit behavior requires mapping the dose responses of each circuit component along the dimensions of both its expression level and its inducer concentration. Using this multidimensional characterization, we were able to computationally explore the behavior of 16 different circuit designs. We experimentally verified a subset of these predictions and found substantial agreement. This method of biological part characterization enables the use of models to identify (un)desired circuit behaviors prior to experimental implementation, thus shortening the design-build-test cycle for more complex circuits.

摘要

数学模型可以辅助遗传回路的设计,但如果个别部分没有以适当的分辨率建模,可能会得出不准确的结果。为了说明这个概念的重要性,我们研究了由两个串联的可诱导合成转录因子组成的转录级联。尽管这个设计很简单,但我们发现准确预测电路行为需要沿着其表达水平和诱导剂浓度的维度映射每个电路组件的剂量反应。使用这种多维特征描述,我们能够在计算上探索 16 种不同的电路设计的行为。我们实验验证了其中一部分预测,并发现了很大的一致性。这种生物部件特征描述的方法可以使模型在实验实施之前识别(不)期望的电路行为,从而缩短更复杂电路的设计-构建-测试周期。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验