Wendisch Fedja J, Abazari Mehri, Werner Valerie, Barb Horia, Rey Marcel, Goerlitzer Eric S A, Vogel Nicolas, Mahdavi Hossein, Bourret Gilles R
Department of Chemistry and Physics of Materials, University of Salzburg, Jakob-Haringer Strasse 2A, Salzburg A-5020, Austria.
School of Chemistry, College of Science, University of Tehran, P.O. Box 14155-6455, Tehran, Iran.
ACS Appl Mater Interfaces. 2020 Nov 25;12(47):52581-52587. doi: 10.1021/acsami.0c14013. Epub 2020 Nov 10.
Metal-silicon nanowire array photoelectrodes provide a promising architecture for water-splitting because they can afford high catalyst loading and decouple charge separation from the light absorption process. To further improve and understand these hybrid nanowire photoelectrodes, control of the catalyst amount and location within the wire array is required. Such a level of control is currently synthetically challenging to achieve. Here, we report the synthesis of cm-sized hybrid silicon nanowire arrays with electrocatalytically active Ni-Mo and Pt patches placed at defined vertical locations within the individual nanowires. Our method is based on a modified three-dimensional electrochemical axial lithography (3DEAL), which combines metal-assisted chemical etching (MACE) to produce Si nanowires with spatially defined SiO protection layers to selectively cover and uncover specific areas within the nanowire arrays. This spatioselective SiO passivation yields nanowire arrays with well-defined exposed Si surfaces, with feature sizes down to 100 nm in the axial direction. Subsequent electrodeposition directs the growth of the metal catalysts at the exposed silicon surfaces. As a proof of concept, we report photoelectrocatalytic activity of the deposited catalysts for the hydrogen evolution reaction on p-type Si nanowire photocathodes. This demonstrates the functionality of these hybrid metal/Si nanowire arrays patterned via 3DEAL, which paves the way for investigations of the influence of three-dimensional geometrical parameters on the conversion efficiency of nanostructured photoelectrodes interfaced with metal catalysts.
金属-硅纳米线阵列光电极提供了一种很有前景的水分解结构,因为它们能够承受高催化剂负载量,并将电荷分离与光吸收过程解耦。为了进一步改进和理解这些混合纳米线光电极,需要控制催化剂在纳米线阵列中的量和位置。目前,要实现这种控制水平在合成上具有挑战性。在这里,我们报告了厘米级混合硅纳米线阵列的合成,其中电催化活性的镍-钼和铂斑块位于单个纳米线内确定的垂直位置。我们的方法基于一种改进的三维电化学轴向光刻技术(3DEAL),该技术结合了金属辅助化学蚀刻(MACE)来制备具有空间定义的二氧化硅保护层的硅纳米线,以选择性地覆盖和暴露纳米线阵列内的特定区域。这种空间选择性的二氧化硅钝化产生了具有明确暴露硅表面的纳米线阵列,其轴向特征尺寸低至100纳米。随后的电沉积引导金属催化剂在暴露的硅表面生长。作为概念验证,我们报告了沉积催化剂在p型硅纳米线光阴极上对析氢反应的光电催化活性。这证明了通过3DEAL图案化的这些混合金属/硅纳米线阵列的功能,为研究三维几何参数对与金属催化剂界面的纳米结构光电极转换效率的影响铺平了道路。