Suppr超能文献

等离子体纳米结构的电化学合成

Electrochemical Synthesis of Plasmonic Nanostructures.

作者信息

Piaskowski Joshua, Bourret Gilles R

机构信息

Department of Chemistry and Physics of Materials, University of Salzburg, Jakob Haringer Strasse 2A, A-5020 Salzburg, Austria.

出版信息

Molecules. 2022 Apr 12;27(8):2485. doi: 10.3390/molecules27082485.

Abstract

Thanks to their tunable and strong interaction with light, plasmonic nanostructures have been investigated for a wide range of applications. In most cases, controlling the electric field enhancement at the metal surface is crucial. This can be achieved by controlling the metal nanostructure size, shape, and location in three dimensions, which is synthetically challenging. Electrochemical methods can provide a reliable, simple, and cost-effective approach to nanostructure metals with a high degree of geometrical freedom. Herein, we review the use of electrochemistry to synthesize metal nanostructures in the context of plasmonics. Both template-free and templated electrochemical syntheses are presented, along with their strengths and limitations. While template-free techniques can be used for the mass production of low-cost but efficient plasmonic substrates, templated approaches offer an unprecedented synthetic control. Thus, a special emphasis is given to templated electrochemical lithographies, which can be used to synthesize complex metal architectures with defined dimensions and compositions in one, two and three dimensions. These techniques provide a spatial resolution down to the sub-10 nanometer range and are particularly successful at synthesizing well-defined metal nanoscale gaps that provide very large electric field enhancements, which are relevant for both fundamental and applied research in plasmonics.

摘要

由于其与光的可调谐且强相互作用,等离子体纳米结构已被研究用于广泛的应用。在大多数情况下,控制金属表面的电场增强至关重要。这可以通过在三个维度上控制金属纳米结构的尺寸、形状和位置来实现,而这在合成方面具有挑战性。电化学方法可以提供一种可靠、简单且经济高效的方法来制备具有高度几何自由度的纳米结构金属。在此,我们回顾了在等离子体激元学背景下利用电化学合成金属纳米结构的情况。介绍了无模板和有模板的电化学合成方法,以及它们的优缺点。虽然无模板技术可用于大规模生产低成本但高效的等离子体基底,但有模板方法提供了前所未有的合成控制。因此,特别强调了有模板的电化学光刻技术,它可用于在一维、二维和三维中合成具有确定尺寸和组成的复杂金属结构。这些技术提供了低至亚10纳米范围的空间分辨率,并且在合成提供非常大电场增强的明确金属纳米级间隙方面特别成功,这对于等离子体激元学的基础研究和应用研究都具有重要意义。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d644/9027786/48516ec847a4/molecules-27-02485-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验