Suppr超能文献

电活性碳纳米管膜在环境应用方面的前景。

Prospects of an Electroactive Carbon Nanotube Membrane toward Environmental Applications.

机构信息

Textile Pollution Controlling Engineering Center of Ministry of Environmental Protection, College of Environmental Science and Engineering, Donghua University, 2999 North Renmin Road, Shanghai, 201620 China.

Shanghai Institute of Pollution Control and Ecological Security, 1239 Siping Road, Shanghai, 200092 China.

出版信息

Acc Chem Res. 2020 Dec 15;53(12):2892-2902. doi: 10.1021/acs.accounts.0c00544. Epub 2020 Nov 10.

Abstract

Rapid population growth and industrialization have driven the emergence of advanced electrochemical and membrane technologies for environmental and energy applications. Electrochemical processes have potential for chemical transformations, chloralkali disinfection, and energy storage. Membrane separations have potential for gas, fluid, and chemical purification. Electrochemical and membrane technologies are often used additively in the same unit process, e.g., the chloroalkali process where a membrane is used to separate cathodic and anodic products from scavenging each other. However, to access the maximal potential requires intimate hybridization of the two technologies into an electroactive membrane. The combination of the two discrete technologies results in a range of synergisms such as reduced footprint, increased processing kinetics, reduced fouling, and increased energy efficiency.Due to their high specific surface area, excellent electric conductivity, and desirable robustness, 1D carbon nanotubes (CNTs) hold promise for many applications over a range of industry sectors such as a base material for electrodes and membranes. Importantly, CNT morphology and surface chemistry can be rationally modified and fine-tuning of these CNT physicochemical properties can enhance their functionality toward practical applications. The CNT 1D form allows assembly of a stable thin-film fibrous network by a variety of facile techniques. These CNT networks have pore sizes in the range of 10-500 nm ( ∼ 6-8) and thicknesses of 10-200 μm, both similar to those of classical polymer membranes, thus allowing for straightforward incorporation into commercial membrane devices modified for electroactivity inclusion.In this Account, CNTs and their composites are used as model electroactive porous materials to exemplify the design strategies and environmental applications of emerging electroactive membrane technology. The Account begins with a brief summary of the electroactive membrane design principles and flow processes developed by our groups. After the methodology section, a detailed discussion is provided on the underlying physical-chemical mechanisms that govern the electroactive membrane technology. Then we summarize our findings on the rational design of several flow-through electrochemical CNT filtration systems focused on either anodic oxidation reactions or cathodic reduction reactions. Subsequently, we discuss a recently discovered electrochemical valence-state-regulation strategy that is capable to detoxify and sequester heavy metal ions. Finally, we conclude the Account with our perspectives toward future development of the electroactive membrane technology.

摘要

快速的人口增长和工业化推动了先进的电化学和膜技术的出现,以用于环境和能源应用。电化学过程具有化学转化、氯碱消毒和能量存储的潜力。膜分离具有气体、流体和化学净化的潜力。电化学和膜技术通常在同一单元过程中附加使用,例如氯碱工艺,其中使用膜将阴极和阳极产物从彼此的清除中分离出来。然而,要发挥最大潜力,需要将这两种技术紧密地混合到一个电活性膜中。两种离散技术的结合产生了一系列协同作用,例如减少占地面积、增加处理动力学、减少结垢和提高能源效率。由于其高比表面积、优异的导电性和理想的稳健性,一维碳纳米管(CNT)在许多应用中具有广阔的前景,例如作为电极和膜的基础材料。重要的是,CNT 的形态和表面化学可以被合理地修饰,并且这些 CNT 物理化学性质的微调可以增强它们在实际应用中的功能。CNT 的一维形式允许通过各种简单的技术组装稳定的薄膜纤维网络。这些 CNT 网络的孔径在 10-500nm(~6-8)之间,厚度在 10-200μm 之间,与传统聚合物膜相似,因此可以直接纳入商业膜设备中进行电活性包括在内。在本账户中,CNT 及其复合材料被用作模型电活性多孔材料,以说明新兴电活性膜技术的设计策略和环境应用。该账户首先简要总结了我们小组开发的电活性膜设计原则和流动过程。在方法部分之后,详细讨论了控制电活性膜技术的基础物理化学机制。然后,我们总结了我们在聚焦于阳极氧化反应或阴极还原反应的几种通过式电化学 CNT 过滤系统的合理设计方面的发现。随后,我们讨论了最近发现的电化学价态调节策略,该策略能够解毒和隔离重金属离子。最后,我们总结了我们对电活性膜技术未来发展的看法。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验