Suppr超能文献

基于电视的功能磁共振成像深度三维自超分辨率

TV-BASED DEEP 3D SELF SUPER-RESOLUTION FOR FMRI.

作者信息

Pérez-Bueno Fernando, Li Hongwei B, Rosen Matthew S, Nasr Shahin, Caballero-Gaudes César, Iglesias Juan E

机构信息

Basque Center on Cognition, Brain, and Language (BCBL), Spain.

Athinoula A. Martinos Center for Biomedical Imaging, Harvard Medical School, USA.

出版信息

Proc IEEE Int Symp Biomed Imaging. 2025 Apr;2025. doi: 10.1109/isbi60581.2025.10980709. Epub 2025 May 12.

Abstract

While functional Magnetic Resonance Imaging (fMRI) offers valuable insights into cognitive processes, its inherent spatial limitations pose challenges for detailed analysis of the fine-grained functional architecture of the brain. More specifically, MRI scanner and sequence specifications impose a trade-off between temporal resolution, spatial resolution, signal-to-noise ratio, and scan time. Deep Learning (DL) Super-Resolution (SR) methods have emerged as a promising solution to enhance fMRI resolution, generating high-resolution (HR) images from low-resolution (LR) images typically acquired with lower scanning times. However, most existing SR approaches depend on supervised DL techniques, which require training ground truth (GT) HR data, which is often difficult to acquire and simultaneously sets a bound for how far SR can go. In this paper, we introduce a novel self-supervised DL SR model that combines a DL network with an analytical approach and Total Variation (TV) regularization. Our method eliminates the need for external GT images, achieving competitive performance compared to supervised DL techniques and preserving the functional maps.

摘要

虽然功能磁共振成像(fMRI)为认知过程提供了有价值的见解,但其固有的空间局限性给大脑精细功能结构的详细分析带来了挑战。更具体地说,MRI扫描仪和序列规格在时间分辨率、空间分辨率、信噪比和扫描时间之间进行权衡。深度学习(DL)超分辨率(SR)方法已成为提高fMRI分辨率的一种有前途的解决方案,可从通常以较短扫描时间获取的低分辨率(LR)图像生成高分辨率(HR)图像。然而,大多数现有的SR方法依赖于监督式DL技术,这需要训练真实的高分辨率(GT)数据,而这些数据往往难以获取,同时也限制了SR的提升幅度。在本文中,我们引入了一种新颖的自监督DL SR模型,该模型将DL网络与一种解析方法和全变差(TV)正则化相结合。我们的方法无需外部的GT图像,与监督式DL技术相比具有竞争力的性能,同时保留了功能图谱。

相似文献

1
TV-BASED DEEP 3D SELF SUPER-RESOLUTION FOR FMRI.基于电视的功能磁共振成像深度三维自超分辨率
Proc IEEE Int Symp Biomed Imaging. 2025 Apr;2025. doi: 10.1109/isbi60581.2025.10980709. Epub 2025 May 12.

本文引用的文献

4
Multiscale brain MRI super-resolution using deep 3D convolutional networks.基于深度三维卷积网络的多尺度脑 MRI 超分辨率方法。
Comput Med Imaging Graph. 2019 Oct;77:101647. doi: 10.1016/j.compmedimag.2019.101647. Epub 2019 Aug 14.
5
10
IMPROVING MAGNETIC RESONANCE RESOLUTION WITH SUPERVISED LEARNING.利用监督学习提高磁共振分辨率
Proc IEEE Int Symp Biomed Imaging. 2014;2014:987-990. doi: 10.1109/ISBI.2014.6868038.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验