Suppr超能文献

基于固定跳跃连接的宽残差网络的磁共振图像超分辨率。

MR Image Super-Resolution via Wide Residual Networks With Fixed Skip Connection.

出版信息

IEEE J Biomed Health Inform. 2019 May;23(3):1129-1140. doi: 10.1109/JBHI.2018.2843819. Epub 2018 Jun 4.

Abstract

Spatial resolution is a critical imaging parameter in magnetic resonance imaging. The image super-resolution (SR) is an effective and cost efficient alternative technique to improve the spatial resolution of MR images. Over the past several years, the convolutional neural networks (CNN)-based SR methods have achieved state-of-the-art performance. However, CNNs with very deep network structures usually suffer from the problems of degradation and diminishing feature reuse, which add difficulty to network training and degenerate the transmission capability of details for SR. To address these problems, in this work, a progressive wide residual network with a fixed skip connection (named FSCWRN) based SR algorithm is proposed to reconstruct MR images, which combines the global residual learning and the shallow network based local residual learning. The strategy of progressive wide networks is adopted to replace deeper networks, which can partially relax the above-mentioned problems, while a fixed skip connection helps provide rich local details at high frequencies from a fixed shallow layer network to subsequent networks. The experimental results on one simulated MR image database and three real MR image databases show the effectiveness of the proposed FSCWRN SR algorithm, which achieves improved reconstruction performance compared with other algorithms.

摘要

空间分辨率是磁共振成像中的一个关键成像参数。图像超分辨率(SR)是一种有效且经济高效的替代技术,可以提高磁共振图像的空间分辨率。在过去的几年中,基于卷积神经网络(CNN)的 SR 方法已经取得了最先进的性能。然而,具有非常深的网络结构的 CNN 通常会遇到降级和特征重用减少的问题,这给网络训练增加了难度,并降低了 SR 的细节传输能力。为了解决这些问题,在这项工作中,提出了一种基于渐进式宽残差网络和固定跳跃连接(称为 FSCWRN)的 SR 算法,用于重建磁共振图像,该算法结合了全局残差学习和基于浅层网络的局部残差学习。渐进式宽网络的策略被采用来替代更深的网络,这可以部分缓解上述问题,而固定的跳跃连接有助于从固定的浅层网络向后续网络提供丰富的高频局部细节。在一个模拟磁共振图像数据库和三个真实磁共振图像数据库上的实验结果表明,所提出的 FSCWRN SR 算法是有效的,与其他算法相比,它实现了更好的重建性能。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验