School of Mathematics, Statistics and Computational Sciences, Central University of Rajasthan, Ajmer 305817, India.
Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa 277-8568, Japan.
Molecules. 2022 Jan 26;27(3):799. doi: 10.3390/molecules27030799.
The entry of the SARS-CoV-2, a causative agent of COVID-19, into human host cells is mediated by the SARS-CoV-2 spike (S) glycoprotein, which critically depends on the formation of complexes involving the spike protein receptor-binding domain (RBD) and the human cellular membrane receptor angiotensin-converting enzyme 2 (hACE2). Using classical site density functional theory (SDFT) and structural bioinformatics methods, we investigate binding and conformational properties of these complexes and study the overlooked role of water-mediated interactions. Analysis of the three-dimensional reference interaction site model (3DRISM) of SDFT indicates that water mediated interactions in the form of additional water bridges strongly increases the binding between SARS-CoV-2 spike protein and hACE2 compared to SARS-CoV-1-hACE2 complex. By analyzing structures of SARS-CoV-2 and SARS-CoV-1, we find that the homotrimer SARS-CoV-2 S receptor-binding domain (RBD) has expanded in size, indicating large conformational change relative to SARS-CoV-1 S protein. Protomer with the up-conformational form of RBD, which binds with hACE2, exhibits stronger intermolecular interactions at the RBD-ACE2 interface, with differential distributions and the inclusion of specific H-bonds in the CoV-2 complex. Further interface analysis has shown that interfacial water promotes and stabilizes the formation of CoV-2/hACE2 complex. This interaction causes a significant structural rigidification of the spike protein, favoring proteolytic processing of the S protein for the fusion of the viral and cellular membrane. Moreover, conformational dynamics simulations of RBD motions in SARS-CoV-2 and SARS-CoV-1 point to the role in modification of the RBD dynamics and their impact on infectivity.
SARS-CoV-2 进入人类宿主细胞是由 COVID-19 的病原体 SARS-CoV-2 刺突(S)糖蛋白介导的,这主要依赖于涉及刺突蛋白受体结合域(RBD)和人类细胞膜受体血管紧张素转换酶 2(hACE2)的复合物的形成。使用经典的位点密度泛函理论(SDFT)和结构生物信息学方法,我们研究了这些复合物的结合和构象特性,并研究了被忽视的水介导相互作用的作用。SDFT 的三维参考相互作用位点模型(3DRISM)分析表明,以额外水桥形式存在的水介导相互作用强烈增加了 SARS-CoV-2 刺突蛋白与 hACE2 之间的结合,与 SARS-CoV-1-hACE2 复合物相比。通过分析 SARS-CoV-2 和 SARS-CoV-1 的结构,我们发现同源三聚体 SARS-CoV-2 S 受体结合域(RBD)的尺寸增大,表明相对于 SARS-CoV-1 S 蛋白发生了较大的构象变化。与 hACE2 结合的 RBD 上构象向上的原体表现出更强的 RBD-ACE2 界面分子间相互作用,在 CoV-2 复合物中具有不同的分布并包含特定的氢键。进一步的界面分析表明,界面水促进和稳定了 CoV-2/hACE2 复合物的形成。这种相互作用导致刺突蛋白的结构显著僵化,有利于 S 蛋白的蛋白水解加工,从而促进病毒和细胞膜的融合。此外,SARS-CoV-2 和 SARS-CoV-1 中 RBD 运动的构象动力学模拟表明了 RBD 动力学修饰的作用及其对感染性的影响。