Suppr超能文献

SARS-CoV 刺突蛋白与 hACE2 复合物的基于位点的密度泛函理论和结构生物信息学分析。

Site Density Functional Theory and Structural Bioinformatics Analysis of the SARS-CoV Spike Protein and hACE2 Complex.

机构信息

School of Mathematics, Statistics and Computational Sciences, Central University of Rajasthan, Ajmer 305817, India.

Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa 277-8568, Japan.

出版信息

Molecules. 2022 Jan 26;27(3):799. doi: 10.3390/molecules27030799.

Abstract

The entry of the SARS-CoV-2, a causative agent of COVID-19, into human host cells is mediated by the SARS-CoV-2 spike (S) glycoprotein, which critically depends on the formation of complexes involving the spike protein receptor-binding domain (RBD) and the human cellular membrane receptor angiotensin-converting enzyme 2 (hACE2). Using classical site density functional theory (SDFT) and structural bioinformatics methods, we investigate binding and conformational properties of these complexes and study the overlooked role of water-mediated interactions. Analysis of the three-dimensional reference interaction site model (3DRISM) of SDFT indicates that water mediated interactions in the form of additional water bridges strongly increases the binding between SARS-CoV-2 spike protein and hACE2 compared to SARS-CoV-1-hACE2 complex. By analyzing structures of SARS-CoV-2 and SARS-CoV-1, we find that the homotrimer SARS-CoV-2 S receptor-binding domain (RBD) has expanded in size, indicating large conformational change relative to SARS-CoV-1 S protein. Protomer with the up-conformational form of RBD, which binds with hACE2, exhibits stronger intermolecular interactions at the RBD-ACE2 interface, with differential distributions and the inclusion of specific H-bonds in the CoV-2 complex. Further interface analysis has shown that interfacial water promotes and stabilizes the formation of CoV-2/hACE2 complex. This interaction causes a significant structural rigidification of the spike protein, favoring proteolytic processing of the S protein for the fusion of the viral and cellular membrane. Moreover, conformational dynamics simulations of RBD motions in SARS-CoV-2 and SARS-CoV-1 point to the role in modification of the RBD dynamics and their impact on infectivity.

摘要

SARS-CoV-2 进入人类宿主细胞是由 COVID-19 的病原体 SARS-CoV-2 刺突(S)糖蛋白介导的,这主要依赖于涉及刺突蛋白受体结合域(RBD)和人类细胞膜受体血管紧张素转换酶 2(hACE2)的复合物的形成。使用经典的位点密度泛函理论(SDFT)和结构生物信息学方法,我们研究了这些复合物的结合和构象特性,并研究了被忽视的水介导相互作用的作用。SDFT 的三维参考相互作用位点模型(3DRISM)分析表明,以额外水桥形式存在的水介导相互作用强烈增加了 SARS-CoV-2 刺突蛋白与 hACE2 之间的结合,与 SARS-CoV-1-hACE2 复合物相比。通过分析 SARS-CoV-2 和 SARS-CoV-1 的结构,我们发现同源三聚体 SARS-CoV-2 S 受体结合域(RBD)的尺寸增大,表明相对于 SARS-CoV-1 S 蛋白发生了较大的构象变化。与 hACE2 结合的 RBD 上构象向上的原体表现出更强的 RBD-ACE2 界面分子间相互作用,在 CoV-2 复合物中具有不同的分布并包含特定的氢键。进一步的界面分析表明,界面水促进和稳定了 CoV-2/hACE2 复合物的形成。这种相互作用导致刺突蛋白的结构显著僵化,有利于 S 蛋白的蛋白水解加工,从而促进病毒和细胞膜的融合。此外,SARS-CoV-2 和 SARS-CoV-1 中 RBD 运动的构象动力学模拟表明了 RBD 动力学修饰的作用及其对感染性的影响。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ad44/8839245/4c4783e20d9e/molecules-27-00799-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验