Ogata Elizabeth M, Baker Michelle A, Rosi Emma J, Smart Trevor B, Long Donald, Aanderud Zachary T
Department of Biology and Ecology Center, Utah State University, Logan, UT, United States.
Cary Institute of Ecosystem Studies, Millbrook, NY, United States.
Front Microbiol. 2020 Oct 15;11:526545. doi: 10.3389/fmicb.2020.526545. eCollection 2020.
Bacteria in stream biofilms contribute to stream biogeochemical processes and are potentially sensitive to the substantial levels of pollution entering urban streams. To examine the effects of contaminants on stream biofilm bacteria , we exposed growing biofilms to experimental additions of nutrients [nitrogen (N), phosphorus (P), and iron (Fe)], pharmaceuticals (caffeine and diphenhydramine), nutrients plus pharmaceuticals, or no contaminants using contaminant exposure substrates (CES) in three catchments in northern Utah. We performed our study at montane and urban sites to examine the influence of existing pollution on biofilm response. We identified bacterial core communities (core) for each contaminant treatment at each land-use type (e.g., nutrient addition montane bacterial core, nutrient addition urban bacterial core, pharmaceutical addition montane bacterial core) by selecting all taxa found in at least 75% of the samples belonging to each specific grouping. Montane and urban land-use distinguished bacterial cores, while nutrients and pharmaceuticals had subtle, but nonetheless distinct effects. Nutrients enhanced the dominance of already abundant copiotrophs [i.e., Pseudomonadaceae (Gammaproteobacteria) and Comamonadaceae (Betaproteobacteria)] within bacterial cores at montane and urban sites. In contrast, pharmaceuticals fostered species-rich bacterial cores containing unique contaminant-degrading taxa within Pseudomonadaceae and Anaerolineaceae (Chloroflexi). Surprisingly, even at urban sites containing ambient pharmaceutical pollution, pharmaceutical additions increased bacterial core richness, specifically within DR-16 (Betaproteobacteria), WCHB1-32 (Bacteroidetes), and Leptotrichiaceae (Fusobacteria). Nutrients exerted greater selective force than pharmaceuticals in nutrient plus pharmaceutical addition treatments, creating bacterial cores more closely resembling those under nutrient rather than pharmaceutical addition, and promoting unique Oscillatoriales (Cyanobacteria) taxa in urban streams. Our results show that additions of N, P, and Fe intensified the dominance of already abundant copiotrophs, while additions of caffeine and diphenhydramine enabled unique taxa associated with contaminant degradation to participate in bacterial cores. Further, biofilm bacteria at urban sites remained sensitive to pharmaceuticals commonly present in waters, suggesting a dynamic interplay among pharmaceutical pollution, bacterial diversity, and contaminant degradation.
溪流生物膜中的细菌对溪流生物地球化学过程有贡献,并且可能对进入城市溪流的大量污染很敏感。为了研究污染物对溪流生物膜细菌的影响,我们在犹他州北部的三个集水区,使用污染物暴露基质(CES),将生长中的生物膜暴露于实验添加的营养物质[氮(N)、磷(P)和铁(Fe)]、药物(咖啡因和苯海拉明)、营养物质加药物或无污染物的环境中。我们在山区和城市地点开展研究,以检验现有污染对生物膜反应的影响。我们通过选择在属于每个特定分组的至少75%的样本中发现的所有分类群,确定了每种土地利用类型(例如,添加营养物质的山区细菌核心、添加营养物质的城市细菌核心、添加药物的山区细菌核心)中每种污染物处理的细菌核心群落(核心)。山区和城市土地利用区分了细菌核心,而营养物质和药物有微妙但仍然明显的影响。营养物质增强了山区和城市地点细菌核心内已经丰富的富营养菌[即假单胞菌科(γ-变形菌纲)和丛毛单胞菌科(β-变形菌纲)]的优势。相比之下,药物促进了物种丰富的细菌核心,这些核心包含假单胞菌科和厌氧绳菌科(绿弯菌门)内独特的污染物降解分类群。令人惊讶的是,即使在含有环境药物污染的城市地点,添加药物也增加了细菌核心丰富度,特别是在DR-16(β-变形菌纲)、WCHB1-32(拟杆菌门)和纤毛菌科(梭杆菌门)内。在营养物质加药物添加处理中,营养物质比药物施加了更大的选择力,产生的细菌核心更类似于添加营养物质而非添加药物时的细菌核心,并促进了城市溪流中独特的颤藻目(蓝细菌门)分类群。我们的结果表明,添加N、P和Fe增强了已经丰富的富营养菌的优势,而添加咖啡因和苯海拉明使与污染物降解相关的独特分类群参与到细菌核心中。此外,城市地点的生物膜细菌对水中常见的药物仍然敏感,这表明药物污染、细菌多样性和污染物降解之间存在动态相互作用。