Suppr超能文献

FunRes:基于细胞间通讯网络模型解析组织特异性功能细胞状态。

FunRes: resolving tissue-specific functional cell states based on a cell-cell communication network model.

机构信息

Computational Biology Group, CIC bioGUNE-BRTA (Basque Research and Technology Alliance), Derio, Bizkaia, 48160, Spain.

Computational Biology Group, Luxembourg Centre for Systems Biomedicine (LCSB), Esch-sur-Alzette, L-4362, Luxembourg.

出版信息

Brief Bioinform. 2021 Jul 20;22(4). doi: 10.1093/bib/bbaa283.

Abstract

The functional specialization of cell types arises during development and is shaped by cell-cell communication networks determining a distribution of functional cell states that are collectively important for tissue functioning. However, the identification of these tissue-specific functional cell states remains challenging. Although a plethora of computational approaches have been successful in detecting cell types and subtypes, they fail in resolving tissue-specific functional cell states. To address this issue, we present FunRes, a computational method designed for the identification of functional cell states. FunRes relies on scRNA-seq data of a tissue to initially reconstruct the functional cell-cell communication network, which is leveraged for partitioning each cell type into functional cell states. We applied FunRes to 177 cell types in 10 different tissues and demonstrated that the detected states correspond to known functional cell states of various cell types, which cannot be recapitulated by existing computational tools. Finally, we characterize emerging and vanishing functional cell states in aging and disease, and demonstrate their involvement in key tissue functions. Thus, we believe that FunRes will be of great utility in the characterization of the functional landscape of cell types and the identification of dysfunctional cell states in aging and disease.

摘要

细胞类型的功能特化是在发育过程中出现的,并受到细胞间通讯网络的影响,这些网络决定了功能细胞状态的分布,这些状态对于组织功能的发挥具有重要意义。然而,确定这些组织特异性的功能细胞状态仍然具有挑战性。尽管有大量的计算方法在检测细胞类型和亚型方面取得了成功,但它们在解决组织特异性功能细胞状态方面却失败了。为了解决这个问题,我们提出了 FunRes,这是一种专门用于识别功能细胞状态的计算方法。FunRes 依赖于组织的 scRNA-seq 数据来最初重建功能细胞间通讯网络,然后利用该网络将每种细胞类型划分为功能细胞状态。我们将 FunRes 应用于 10 种不同组织中的 177 种细胞类型,并证明了检测到的状态与各种细胞类型的已知功能细胞状态相对应,而这些状态不能被现有的计算工具所再现。最后,我们描述了衰老和疾病中新兴和消失的功能细胞状态,并证明了它们与关键组织功能的关联。因此,我们相信 FunRes 将在细胞类型功能景观的描述和衰老和疾病中功能失调细胞状态的识别方面具有重要的应用价值。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/25c8/8293827/4a09e98e205d/bbaa283f1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验