Suppr超能文献

用于研究糖尿病性视网膜病变的基准:分割、分级和可转移性。

A Benchmark for Studying Diabetic Retinopathy: Segmentation, Grading, and Transferability.

出版信息

IEEE Trans Med Imaging. 2021 Mar;40(3):818-828. doi: 10.1109/TMI.2020.3037771. Epub 2021 Mar 2.

Abstract

People with diabetes are at risk of developing an eye disease called diabetic retinopathy (DR). This disease occurs when high blood glucose levels cause damage to blood vessels in the retina. Computer-aided DR diagnosis has become a promising tool for the early detection and severity grading of DR, due to the great success of deep learning. However, most current DR diagnosis systems do not achieve satisfactory performance or interpretability for ophthalmologists, due to the lack of training data with consistent and fine-grained annotations. To address this problem, we construct a large fine-grained annotated DR dataset containing 2,842 images (FGADR). Specifically, this dataset has 1,842 images with pixel-level DR-related lesion annotations, and 1,000 images with image-level labels graded by six board-certified ophthalmologists with intra-rater consistency. The proposed dataset will enable extensive studies on DR diagnosis. Further, we establish three benchmark tasks for evaluation: 1. DR lesion segmentation; 2. DR grading by joint classification and segmentation; 3. Transfer learning for ocular multi-disease identification. Moreover, a novel inductive transfer learning method is introduced for the third task. Extensive experiments using different state-of-the-art methods are conducted on our FGADR dataset, which can serve as baselines for future research. Our dataset will be released in https://csyizhou.github.io/FGADR/.

摘要

糖尿病患者有患上一种名为糖尿病性视网膜病变(DR)的眼部疾病的风险。这种疾病是由于高血糖水平对视网膜血管造成损害而引起的。由于深度学习的巨大成功,计算机辅助 DR 诊断已成为早期发现和严重程度分级 DR 的一种很有前途的工具。然而,由于缺乏具有一致和精细注释的训练数据,大多数现有的 DR 诊断系统无法为眼科医生提供令人满意的性能或可解释性。为了解决这个问题,我们构建了一个包含 2842 张图像的大型精细标注 DR 数据集(FGADR)。具体来说,该数据集包含 1842 张具有像素级 DR 相关病变注释的图像,以及 1000 张由六名具有内部一致性的董事会认证眼科医生进行图像级分级的图像。该数据集将促进对 DR 诊断的广泛研究。此外,我们建立了三个基准任务进行评估:1. DR 病变分割;2. 联合分类和分割的 DR 分级;3. 眼部多疾病识别的迁移学习。此外,对于第三个任务,引入了一种新的归纳迁移学习方法。在我们的 FGADR 数据集上使用不同的最先进方法进行了广泛的实验,这些实验可以作为未来研究的基准。我们的数据集将在 https://csyizhou.github.io/FGADR/ 上发布。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验