Suppr超能文献

DR-GAN:用于糖尿病视网膜病变图像中精细病变合成的条件生成对抗网络。

DR-GAN: Conditional Generative Adversarial Network for Fine-Grained Lesion Synthesis on Diabetic Retinopathy Images.

出版信息

IEEE J Biomed Health Inform. 2022 Jan;26(1):56-66. doi: 10.1109/JBHI.2020.3045475. Epub 2022 Jan 17.

Abstract

Diabetic retinopathy (DR) is a complication of diabetes that severely affects eyes. It can be graded into five levels of severity according to international protocol. However, optimizing a grading model to have strong generalizability requires a large amount of balanced training data, which is difficult to collect, particularly for the high severity levels. Typical data augmentation methods, including random flipping and rotation, cannot generate data with high diversity. In this paper, we propose a diabetic retinopathy generative adversarial network (DR-GAN) to synthesize high-resolution fundus images which can be manipulated with arbitrary grading and lesion information. Thus, large-scale generated data can be used for more meaningful augmentation to train a DR grading and lesion segmentation model. The proposed retina generator is conditioned on the structural and lesion masks, as well as adaptive grading vectors sampled from the latent grading space, which can be adopted to control the synthesized grading severity. Moreover, a multi-scale spatial and channel attention module is devised to improve the generation ability to synthesize small details. Multi-scale discriminators are designed to operate from large to small receptive fields, and joint adversarial losses are adopted to optimize the whole network in an end-to-end manner. With extensive experiments evaluated on the EyePACS dataset connected to Kaggle, as well as the FGADR dataset, we validate the effectiveness of our method, which can both synthesize highly realistic ( 1280 ×1280) controllable fundus images and contribute to the DR grading task.

摘要

糖尿病性视网膜病变(DR)是一种严重影响眼睛的糖尿病并发症。它可以根据国际协议分为五个严重程度级别。然而,优化一个具有强泛化能力的分级模型需要大量平衡的训练数据,这很难收集,尤其是对于高严重程度级别。典型的数据增强方法,包括随机翻转和旋转,不能生成具有高度多样性的数据。在本文中,我们提出了一种糖尿病性视网膜病变生成对抗网络(DR-GAN),用于合成高分辨率眼底图像,可以对任意分级和病变信息进行操作。因此,可以使用大规模生成的数据进行更有意义的增强,以训练 DR 分级和病变分割模型。所提出的视网膜生成器的条件是结构和病变掩模,以及从潜在分级空间中采样的自适应分级向量,这可以用于控制合成分级的严重程度。此外,设计了一个多尺度空间和通道注意力模块,以提高生成小细节的能力。设计了多尺度鉴别器,从大到小的感受野进行操作,并采用联合对抗损失,以端到端的方式优化整个网络。通过在与 Kaggle 连接的 EyePACS 数据集以及 FGADR 数据集上进行广泛的实验评估,验证了我们的方法的有效性,该方法既能合成高度逼真的(1280×1280)可控眼底图像,又能有助于 DR 分级任务。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验