Li Zhi, Tian Ye, Teng Chao, Cao Hai
Institute of Marine Biomedicine, Shenzhen Polytechnic, Shenzhen 518055, China.
State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 211816, China.
Materials (Basel). 2020 Nov 9;13(21):5049. doi: 10.3390/ma13215049.
The barrier layer in Cu technology is essential to prevent Cu from diffusing into the dielectric layer at high temperatures; therefore, it must have a high stability and good adhesion to both Cu and the dielectric layer. In the past three decades, tantalum/tantalum nitride (Ta/TaN) has been widely used as an inter-layer to separate the dielectric layer and the Cu. However, to fulfill the demand for continuous down-scaling of the Cu technology node, traditional materials and technical processes are being challenged. Direct electrochemical deposition of Cu on top of Ta/TaN is not realistic, due to its high resistivity. Therefore, pre-deposition of a Cu seed layer by physical vapor deposition (PVD) or chemical vapor deposition (CVD) is necessary, but the non-uniformity of the Cu seed layer has a devastating effect on the defect-free fill of modern sub-20 or even sub-10 nm Cu technology nodes. New Cu diffusion barrier materials having ultra-thin size, high resistivity and stability are needed for the successful super-fill of trenches at the nanometer scale. In this review, we briefly summarize recent advances in the development of Cu diffusion-proof materials, including metals, metal alloys, self-assembled molecular layers (SAMs), two-dimensional (2D) materials and high-entropy alloys (HEAs). Also, challenges are highlighted and future research directions are suggested.
铜工艺中的阻挡层对于防止铜在高温下扩散到介电层至关重要;因此,它必须具有高稳定性以及与铜和介电层都良好的附着力。在过去三十年中,钽/氮化钽(Ta/TaN)已被广泛用作隔离介电层和铜的中间层。然而,为了满足铜技术节点不断缩小的需求,传统材料和工艺正面临挑战。由于Ta/TaN的高电阻率,在其顶部直接电化学沉积铜是不现实的。因此,通过物理气相沉积(PVD)或化学气相沉积(CVD)预沉积铜籽晶层是必要的,但铜籽晶层的不均匀性对现代20纳米以下甚至10纳米以下铜技术节点的无缺陷填充有毁灭性影响。成功实现纳米级沟槽的超填充需要具有超薄尺寸、高电阻率和稳定性的新型铜扩散阻挡材料。在本综述中,我们简要总结了铜防扩散材料开发的最新进展,包括金属、金属合金、自组装分子层(SAMs)、二维(2D)材料和高熵合金(HEAs)。此外,还强调了挑战并提出了未来的研究方向。