Suppr超能文献

设计细胞外囊泡调节神经前体细胞反应并提高颅内保留率。

Designer Extracellular Vesicles Modulate Pro-Neuronal Cell Responses and Improve Intracranial Retention.

机构信息

Department of Biomedical Engineering, The Ohio State University, Columbus, OH, 43210, USA.

Center for Electron Microscopy and Analysis (CEMAS), The Ohio State University, Columbus, OH, 43212, USA.

出版信息

Adv Healthc Mater. 2022 Mar;11(5):e2100805. doi: 10.1002/adhm.202100805. Epub 2022 Jan 21.

Abstract

Gene/oligonucleotide therapies have emerged as a promising strategy for the treatment of different neurological conditions. However, current methodologies for the delivery of neurogenic/neurotrophic cargo to brain and nerve tissue are fraught with caveats, including reliance on viral vectors, potential toxicity, and immune/inflammatory responses. Moreover, delivery to the central nervous system is further compounded by the low permeability of the blood brain barrier. Extracellular vesicles (EVs) have emerged as promising delivery vehicles for neurogenic/neurotrophic therapies, overcoming many of the limitations mentioned above. However, the manufacturing processes used for therapeutic EVs remain poorly understood. Here, we conducted a detailed study of the manufacturing process of neurogenic EVs by characterizing the nature of cargo and surface decoration, as well as the transfer dynamics across donor cells, EVs, and recipient cells. Neurogenic EVs loaded with Ascl1, Brn2, and Myt1l (ABM) are found to show enhanced neuron-specific tropism, modulate electrophysiological activity in neuronal cultures, and drive pro-neurogenic conversions/reprogramming. Moreover, murine studies demonstrate that surface decoration with glutamate receptors appears to mediate enhanced EV delivery to the brain. Altogether, the results indicate that ABM-loaded designer EVs can be a promising platform nanotechnology to drive pro-neuronal responses, and that surface functionalization with glutamate receptors can facilitate the deployment of EVs to the brain.

摘要

基因/寡核苷酸疗法已成为治疗多种神经疾病的一种有前途的策略。然而,目前将神经发生/神经营养货物递送到脑和神经组织的方法存在许多缺点,包括依赖病毒载体、潜在毒性和免疫/炎症反应。此外,由于血脑屏障的通透性低,向中枢神经系统的输送更加复杂。细胞外囊泡(EVs)已成为神经发生/神经营养治疗的有前途的递药载体,克服了上述许多限制。然而,用于治疗性 EV 的制造工艺仍知之甚少。在这里,我们通过对货物和表面修饰的性质以及供体细胞、EV 和受体细胞之间的转移动力学进行详细研究,对神经发生 EV 的制造工艺进行了深入研究。负载有 Ascl1、Brn2 和 Myt1l(ABM)的神经发生 EV 显示出增强的神经元特异性趋向性,调节神经元培养物中的电生理活性,并驱动促神经发生转化/重编程。此外,鼠类研究表明,谷氨酸受体的表面修饰似乎介导了 EV 向大脑的增强传递。总之,这些结果表明,负载 ABM 的设计 EV 可以成为一种有前途的平台纳米技术,以驱动神经元反应,并且表面功能化的谷氨酸受体可以促进 EV 向大脑的部署。

相似文献

2
Extracellular Vesicles as Drug Delivery Vehicles to the Central Nervous System.细胞外囊泡作为药物递送至中枢神经系统的载体。
J Neuroimmune Pharmacol. 2020 Sep;15(3):443-458. doi: 10.1007/s11481-019-09875-w. Epub 2019 Sep 4.
8
Engineered EVs designed to target diseases of the CNS.旨在针对中枢神经系统疾病的工程 EVs。
J Control Release. 2023 Apr;356:493-506. doi: 10.1016/j.jconrel.2023.03.009. Epub 2023 Mar 15.

引用本文的文献

1
Synthetic Biology-Based Engineering Cells for Drug Delivery.基于合成生物学的药物递送工程细胞
Exploration (Beijing). 2025 Jan 16;5(2):20240095. doi: 10.1002/EXP.20240095. eCollection 2025 Apr.
7
Engineered Extracellular Vesicle-Based Therapies for Valvular Heart Disease.基于工程化细胞外囊泡的瓣膜性心脏病治疗方法
Cell Mol Bioeng. 2023 Sep 26;16(4):309-324. doi: 10.1007/s12195-023-00783-x. eCollection 2023 Aug.

本文引用的文献

1
Extracellular vesicles versus synthetic nanoparticles for drug delivery.用于药物递送的细胞外囊泡与合成纳米颗粒
Nat Rev Mater. 2021 Feb;6(2):103-106. doi: 10.1038/s41578-020-00277-6. Epub 2021 Jan 7.
7
8
Extracellular vesicles as drug delivery systems: Why and how?细胞外囊泡作为药物递送系统:为何以及如何?
Adv Drug Deliv Rev. 2020;159:332-343. doi: 10.1016/j.addr.2020.04.004. Epub 2020 Apr 16.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验