Suppr超能文献

乳酸暴露促进固有免疫细胞中的免疫抑制表型。

Lactate Exposure Promotes Immunosuppressive Phenotypes in Innate Immune Cells.

作者信息

Sangsuwan Rapeepat, Thuamsang Bhasirie, Pacifici Noah, Allen Riley, Han Hyunsoo, Miakicheva Svetlana, Lewis Jamal S

机构信息

Department of Biomedical Engineering, University of California, Davis, 1 Shields Avenue, Davis, CA 95616 USA.

出版信息

Cell Mol Bioeng. 2020 Sep 21;13(5):541-557. doi: 10.1007/s12195-020-00652-x. eCollection 2020 Oct.

Abstract

INTRODUCTION

Lactate secreted by tumors is not just a byproduct, but rather an active modulator of immune cells. There are few studies aimed at investigating the true effect of lactate, which is normally confounded by pH. Such a knowledge gap needs to be addressed. Herein, we studied the immunomodulatory effects of lactate on dendritic cells (DCs) and macrophages (MΦs).

METHODS

Bone marrow-derived innate immune cells were treated with 50 mM sodium lactate (sLA) and incubated for 2 days or 5 days at 37 °C. Controls included media, lipopolysaccharide (LPS), MCT inhibitors (α-cyano-4-hydroxycinnamic acid and AR-C15585). Flow cytometric analysis of immune phenotypes were performed by incubating cells with specific marker antibodies and viability dye. Differential expression analyses were conducted on R using limma-voom and adjusted p-values were generated using the Bejamini-Hochberg Procedure.

RESULTS

Lactate exposure attenuated DC maturation through the downregulation of CD80 and MHCII expression under LPS stimulation. For MΦs, lactate exposure resulted in M2 polarization as evidenced by the reduction of M1 markers (CD38 and iNOS), and the increase in expression of CD163 and Arg1. We also revealed the role of monocarboxylate transporters (MCTs) in mediating lactate effect in MΦs. MCT4 inhibition significantly boosted lactate M2 polarization, while blocking of MCT1/2 failed to reverse the immunosuppressive effect of lactate, correlating with the result of gene expression that lactate increased MCT4 expression, but downregulated the expression of MCT1/2.

CONCLUSIONS

This research provides valuable insight on the influence of metabolic products on tumor immunity and will help to identify novel metabolic targets for augmenting cancer immunotherapies.

摘要

引言

肿瘤分泌的乳酸不仅仅是一种副产品,更是免疫细胞的活性调节剂。旨在研究乳酸真正作用的研究较少,其作用通常会受到pH值的干扰。这种知识空白需要得到填补。在此,我们研究了乳酸对树突状细胞(DCs)和巨噬细胞(MΦs)的免疫调节作用。

方法

用50 mM乳酸钠(sLA)处理骨髓来源的天然免疫细胞,并在37°C下孵育2天或5天。对照组包括培养基、脂多糖(LPS)、MCT抑制剂(α-氰基-4-羟基肉桂酸和AR-C15585)。通过用特异性标记抗体和活力染料孵育细胞,对免疫表型进行流式细胞术分析。使用limma-voom在R上进行差异表达分析,并使用Benjamini-Hochberg程序生成校正后的p值。

结果

在LPS刺激下,乳酸暴露通过下调CD80和MHCII表达减弱了DC的成熟。对于MΦs,乳酸暴露导致M2极化,表现为M1标记物(CD38和iNOS)减少,以及CD163和Arg1表达增加。我们还揭示了单羧酸转运蛋白(MCTs)在介导乳酸对MΦs作用中的作用。抑制MCT4显著增强了乳酸诱导的M2极化,而阻断MCT1/2未能逆转乳酸的免疫抑制作用,这与基因表达结果相关,即乳酸增加了MCT4的表达,但下调了MCT1/2的表达。

结论

本研究为代谢产物对肿瘤免疫的影响提供了有价值的见解,并将有助于确定增强癌症免疫治疗的新代谢靶点。

相似文献

1
Lactate Exposure Promotes Immunosuppressive Phenotypes in Innate Immune Cells.
Cell Mol Bioeng. 2020 Sep 21;13(5):541-557. doi: 10.1007/s12195-020-00652-x. eCollection 2020 Oct.
5
Monocarboxylate transporters in cancer.
Mol Metab. 2020 Mar;33:48-66. doi: 10.1016/j.molmet.2019.07.006. Epub 2019 Jul 27.
8
CD147 regulates the expression of MCT1 and lactate export in multiple myeloma cells.
Cell Cycle. 2013 Oct 1;12(19):3175-83. doi: 10.4161/cc.26193. Epub 2013 Sep 3.
9
Lactic acid promotes macrophage polarization through MCT-HIF1α signaling in gastric cancer.
Exp Cell Res. 2020 Mar 15;388(2):111846. doi: 10.1016/j.yexcr.2020.111846. Epub 2020 Jan 13.
10
Hypoxia-mediated upregulation of MCT1 expression supports the glycolytic phenotype of glioblastomas.
Oncotarget. 2016 Jul 19;7(29):46335-46353. doi: 10.18632/oncotarget.10114.

引用本文的文献

2
Immune evasion in cancer: mechanisms and cutting-edge therapeutic approaches.
Signal Transduct Target Ther. 2025 Jul 31;10(1):227. doi: 10.1038/s41392-025-02280-1.
3
Research trends on lactate in cancer: a bibliometric analysis and comprehensive review (2015-2024).
Front Immunol. 2025 May 9;16:1587867. doi: 10.3389/fimmu.2025.1587867. eCollection 2025.
4
Mechanism of action of lncRNA-NEAT1 in immune diseases.
Front Genet. 2025 Mar 5;16:1501115. doi: 10.3389/fgene.2025.1501115. eCollection 2025.
5
Unraveling the triad of hypoxia, cancer cell stemness, and drug resistance.
J Hematol Oncol. 2025 Mar 18;18(1):32. doi: 10.1186/s13045-025-01684-4.
6
The emerging role of glycolysis and immune evasion in ovarian cancer.
Cancer Cell Int. 2025 Mar 5;25(1):78. doi: 10.1186/s12935-025-03698-x.
7
Identification of signaling networks associated with lactate modulation of macrophages and dendritic cells.
Heliyon. 2025 Jan 28;11(3):e42098. doi: 10.1016/j.heliyon.2025.e42098. eCollection 2025 Feb 15.
9
Engineering immunity using metabolically active polymeric nanoparticles.
Trends Biotechnol. 2025 Jun;43(6):1371-1384. doi: 10.1016/j.tibtech.2024.11.016. Epub 2024 Dec 27.
10

本文引用的文献

2
Single injection of IL-12 coacervate as an effective therapy against B16-F10 melanoma in mice.
J Control Release. 2020 Feb;318:270-278. doi: 10.1016/j.jconrel.2019.12.035. Epub 2019 Dec 19.
3
Expression of CD38 on Macrophages Predicts Improved Prognosis in Hepatocellular Carcinoma.
Front Immunol. 2019 Sep 4;10:2093. doi: 10.3389/fimmu.2019.02093. eCollection 2019.
5
Mechanistic basis of L-lactate transport in the SLC16 solute carrier family.
Nat Commun. 2019 Jun 14;10(1):2649. doi: 10.1038/s41467-019-10566-6.
6
Efficiency of CAR-T Therapy for Treatment of Solid Tumor in Clinical Trials: A Meta-Analysis.
Dis Markers. 2019 Feb 11;2019:3425291. doi: 10.1155/2019/3425291. eCollection 2019.
7
Lactate secreted by cervical cancer cells modulates macrophage phenotype.
J Leukoc Biol. 2019 May;105(5):1041-1054. doi: 10.1002/JLB.3A0718-274RR. Epub 2019 Feb 27.
8
Arg1 expression defines immunosuppressive subsets of tumor-associated macrophages.
Theranostics. 2018 Nov 12;8(21):5842-5854. doi: 10.7150/thno.26888. eCollection 2018.
9
Latent, Immunosuppressive Nature of Poly(lactic--glycolic acid) Microparticles.
ACS Biomater Sci Eng. 2018 Mar 12;4(3):900-918. doi: 10.1021/acsbiomaterials.7b00831. Epub 2018 Feb 3.
10
CD38: A Target for Immunotherapeutic Approaches in Multiple Myeloma.
Front Immunol. 2018 Nov 28;9:2722. doi: 10.3389/fimmu.2018.02722. eCollection 2018.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验