Suppr超能文献

脊柱手术后住院时间延长的驱动因素:基于博弈论的机器学习模型解释方法。

Drivers of Prolonged Hospitalization Following Spine Surgery: A Game-Theory-Based Approach to Explaining Machine Learning Models.

机构信息

Departments of Neurosurgery (M.L.M., S.N.N., E.K.O., J.T.G., and J.M.C.) and Anesthesiology (J.S.G.), Icahn School of Medicine at Mount Sinai, New York, NY.

出版信息

J Bone Joint Surg Am. 2021 Jan 6;103(1):64-73. doi: 10.2106/JBJS.20.00875.

Abstract

BACKGROUND

Understanding the interactions between variables that predict prolonged hospital length of stay (LOS) following spine surgery can help uncover drivers of this risk in patients. This study utilized a novel game-theory-based approach to develop explainable machine learning models to understand such interactions in a large cohort of patients treated with spine surgery.

METHODS

Of 11,150 patients who underwent surgery for degenerative spine conditions at a single institution, 3,310 (29.7%) were characterized as having prolonged LOS. Machine learning models predicting LOS were built for each patient. Shapley additive explanation (SHAP) values were calculated for each patient model to quantify the importance of features and variable interaction effects.

RESULTS

Models using features identified by SHAP values were highly predictive of prolonged LOS risk (mean C-statistic = 0.87). Feature importance analysis revealed that prolonged LOS risk is multifactorial. Non-elective admission produced elevated SHAP values, indicating a clear, strong risk of prolonged LOS. In contrast, intraoperative and sociodemographic factors displayed bidirectional influences on risk, suggesting potential protective effects with optimization of factors such as estimated blood loss, surgical duration, and comorbidity burden.

CONCLUSIONS

Meticulous management of patients with high comorbidity burdens or Medicaid insurance who are admitted non-electively or spend clinically indicated time in the intensive care unit (ICU) during their hospitalization course may be warranted to reduce their risk of unanticipated prolonged LOS following spine surgery.

LEVEL OF EVIDENCE

Prognostic Level III. See Instructions for Authors for a complete description of levels of evidence.

摘要

背景

了解预测脊柱手术后住院时间延长(LOS)的变量之间的相互作用,可以帮助揭示患者面临这种风险的驱动因素。本研究利用一种新颖的基于博弈论的方法,为接受脊柱手术治疗的大量患者开发了可解释的机器学习模型,以了解这种相互作用。

方法

在一家机构接受退行性脊柱疾病手术的 11150 名患者中,有 3310 名(29.7%)被确定为 LOS 延长。为每位患者建立了预测 LOS 的机器学习模型。为每位患者模型计算了 Shapley 加性解释(SHAP)值,以量化特征和变量交互效应的重要性。

结果

使用 SHAP 值确定的特征的模型对延长 LOS 风险具有高度预测性(平均 C 统计量=0.87)。特征重要性分析表明,延长 LOS 的风险是多因素的。非择期入院会产生较高的 SHAP 值,表明延长 LOS 的风险明显且强烈。相比之下,术中因素和社会人口统计学因素对风险有双向影响,这表明通过优化估计失血量、手术持续时间和合并症负担等因素,可能会产生潜在的保护作用。

结论

对于患有高合并症负担或医疗补助保险的患者,以及非择期入院或在住院期间在重症监护病房(ICU)中度过临床规定时间的患者,需要进行精细的管理,以降低脊柱手术后意外延长 LOS 的风险。

证据水平

预后 III 级。欲了解完整的证据水平描述,请参阅作者指南。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验