Suppr超能文献

了解全肩关节置换术后 90 天内再手术导致早期脱位的风险:通过成本敏感机器学习进行极端罕见事件检测。

Understanding risk for early dislocation resulting in reoperation within 90 days of reverse total shoulder arthroplasty: extreme rare event detection through cost-sensitive machine learning.

机构信息

Mayo Clinic Alix School of Medicine, Rochester, MN, USA; Oslo Sports Trauma Research Center, Norwegian School of Sport Sciences, Oslo, Norway.

Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, USA.

出版信息

J Shoulder Elbow Surg. 2023 Sep;32(9):e437-e450. doi: 10.1016/j.jse.2023.03.001. Epub 2023 Mar 22.

Abstract

BACKGROUND

Reliable prediction of postoperative dislocation after reverse total shoulder arthroplasty (RSA) would inform patient counseling as well as surgical and postoperative decision making. Understanding interactions between multiple risk factors is important to identify those patients most at risk of this rare but costly complication. To better understand these interactions, a game theory-based approach was undertaken to develop machine learning models capable of predicting dislocation-related 90-day readmission following RSA.

MATERIAL & METHODS: A retrospective review of the Nationwide Readmissions Database was performed to identify patients who underwent RSA between 2016 and 2018 with a subsequent readmission for prosthetic dislocation. Of the 74,697 index procedures included in the data set, 740 (1%) experienced a dislocation resulting in hospital readmission within 90 days. Five machine learning algorithms were evaluated for their ability to predict dislocation leading to hospital readmission within 90 days of RSA. Shapley additive explanation (SHAP) values were calculated for the top-performing models to quantify the importance of features and understand variable interaction effects, with hierarchical clustering used to identify cohorts of patients with similar risk factor combinations.

RESULTS

Of the 5 models evaluated, the extreme gradient boosting algorithm was the most reliable in predicting dislocation (C statistic = 0.71, F score = 0.07, recall = 0.84, Brier score = 0.21). SHAP value analysis revealed multifactorial explanations for dislocation risk, with presence of a preoperative humerus fracture; disposition involving discharge or transfer to a skilled nursing facility, intermediate care facility, or other nonroutine facility; and Medicaid as the expected primary payer resulting in strong, positive, and unidirectional effects on increasing dislocation risk. In contrast, factors such as comorbidity burden, index procedure complexity and duration, age, sex, and presence or absence of preoperative glenohumeral osteoarthritis displayed bidirectional influences on risk, indicating potential protective effects for these variables and opportunities for risk mitigation. Hierarchical clustering using SHAP values identified patients with similar risk factor combinations.

CONCLUSION

Machine learning can reliably predict patients at risk for postoperative dislocation resulting in hospital readmission within 90 days of RSA. Although individual risk for dislocation varies significantly based on unique combinations of patient characteristics, SHAP analysis revealed a particularly at-risk cohort consisting of young, male patients with high comorbidity burdens who are indicated for RSA after a humerus fracture. These patients may require additional modifications in postoperative activity, physical therapy, and counseling on risk-reducing measures to prevent early dislocation after RSA.

摘要

背景

可靠地预测反式全肩关节置换术(RSA)后的术后脱位,将有助于为患者提供咨询,并为手术和术后决策提供信息。了解多个风险因素之间的相互作用对于确定那些最容易发生这种罕见但代价高昂的并发症的患者非常重要。为了更好地理解这些相互作用,采用了基于博弈论的方法来开发能够预测 RSA 后 90 天内与脱位相关的再入院的机器学习模型。

材料和方法

对全国再入院数据库进行了回顾性分析,以确定 2016 年至 2018 年间接受 RSA 并随后因假体脱位而再次入院的患者。在数据集中包含的 74697 例指数手术中,有 740 例(1%)在 RSA 后 90 天内发生脱位导致医院再入院。评估了五种机器学习算法预测 RSA 后 90 天内导致医院再入院的脱位的能力。为表现最佳的模型计算了 Shapley 加法解释(SHAP)值,以量化特征的重要性并了解变量的交互效应,使用层次聚类来识别具有相似风险因素组合的患者群体。

结果

在评估的 5 种模型中,极端梯度增强算法在预测脱位方面最为可靠(C 统计量=0.71,F 分数=0.07,召回率=0.84,Brier 得分=0.21)。SHAP 值分析揭示了脱位风险的多因素解释,包括术前肱骨干骨折的存在;出院或转至熟练护理机构、中级护理机构或其他非常规机构的处置;以及医疗补助作为预期的主要支付者,这导致脱位风险的强烈、积极和单向影响。相比之下,合并症负担、指数手术的复杂性和持续时间、年龄、性别以及术前肩肱关节炎的存在或不存在等因素对风险的影响呈双向,这表明这些变量存在潜在的保护作用,并且有机会进行风险缓解。使用 SHAP 值的层次聚类确定了具有相似风险因素组合的患者。

结论

机器学习可以可靠地预测 RSA 后导致 90 天内医院再入院的术后脱位风险。尽管个体脱位风险因患者特征的独特组合而有很大差异,但 SHAP 分析揭示了一个特别危险的队列,由年轻、男性、高合并症负担的患者组成,他们在肱骨干骨折后需要进行 RSA。这些患者可能需要在术后活动、物理治疗和降低风险措施方面进行额外的修改,以防止 RSA 后早期脱位。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验