Authier Juliette, Loos Pierre-François
Laboratoire de Chimie et Physique Quantiques (UMR 5626), Université de Toulouse, CNRS, UPS, Toulouse, France.
J Chem Phys. 2020 Nov 14;153(18):184105. doi: 10.1063/5.0028040.
We discuss the physical properties and accuracy of three distinct dynamical (i.e., frequency-dependent) kernels for the computation of optical excitations within linear response theory: (i) an a priori built kernel inspired by the dressed time-dependent density-functional theory kernel proposed by Maitra et al. [J. Chem. Phys. 120, 5932 (2004)], (ii) the dynamical kernel stemming from the Bethe-Salpeter equation (BSE) formalism derived originally by Strinati [Riv. Nuovo Cimento 11, 1-86 (1988)], and (iii) the second-order BSE kernel derived by Zhang et al. [J. Chem. Phys. 139, 154109 (2013)]. The principal take-home message of the present paper is that dynamical kernels can provide, thanks to their frequency-dependent nature, additional excitations that can be associated with higher-order excitations (such as the infamous double excitations), an unappreciated feature of dynamical quantities. We also analyze, for each kernel, the appearance of spurious excitations originating from the approximate nature of the kernels, as first evidenced by Romaniello et al. [J. Chem. Phys. 130, 044108 (2009)]. Using a simple two-level model, prototypical examples of valence, charge-transfer, and Rydberg excited states are considered.
我们讨论了三种不同的动力学(即频率相关)核的物理性质和准确性,这些核用于在线性响应理论中计算光学激发:(i)一种先验构建的核,灵感来自于Maitra等人提出的含时密度泛函理论核[《化学物理杂志》120, 5932 (2004)];(ii)源于最初由Strinati推导的贝叶斯 - 萨尔皮特方程(BSE)形式主义的动力学核[《新实验核物理学评论》11, 1 - 86 (1988)];以及(iii)由Zhang等人推导的二阶BSE核[《化学物理杂志》139, 154109 (2013)]。本文的主要信息是,由于其频率相关的性质,动力学核可以提供与高阶激发(如臭名昭著的双激发)相关的额外激发,这是动力学量一个未被重视的特征。我们还针对每个核分析了源于核的近似性质的虚假激发的出现情况,这首先由Romaniello等人证明[《化学物理杂志》130, 044108 (2009)]。使用一个简单的双能级模型,考虑了价态、电荷转移和里德堡激发态的典型例子。